Skip to main content
Log in

Stoichiometric network analysis

  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

Stoichiometric network analysis is a systematic, general approach to the qualitative, nonlinear dynamics of chemical reaction mechanisms and other systems with stoichiometry. The advantage of a qualitative approach is that no rate constants are needed to determine qualitative features of the dynamics. If one is interested in stability, the approach yields inequalities among the steady-state concentrations and the rate of flow through sequences of important reactions. These parameters are often the ones most easily measured experimentally. By comparing such experiments with the inequalities derived from stoichiometric network analysis, one can often prove that certain mechanisms cannot account for oscillations or other types of observed dynamics.

The approach covers far more than stability. The existence of steady states of zero concentration has an interesting mathematics and applies to chemical evolution. The folding of the manifold of steady states can be found by direct calculation and plays a role in switching enzymes on and off. The approach leads to theorems showing that some steady states are globally attracting or, possibly, that a region containing chaos or an oscillation is globally attracting. The subject of sensitivity analysis has been reformulated in this context. Algorithms that apply many of the theoretical results to chemical networks have been developed and combined into a computer program package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, T. L. (1968),Thermodynamics for Chemists and Biologists, Addison-Wesley, Reading MA.

    Google Scholar 

  2. Clarke, B. L. (1974),J. Chem. Phys. 60, 1481.

    Article  CAS  Google Scholar 

  3. Clarke, B. L. (1974),J. Chem. Phys. 60, 1493.

    Article  CAS  Google Scholar 

  4. Clarke, B. L. (1975),J. Chem. Phys. 62, 773.

    Article  CAS  Google Scholar 

  5. Clarke, B. L. (1980),J. Chem. Phys. 62, 3726.

    Article  Google Scholar 

  6. Clarke, B. L. (1980),Stability of Complex Reaction Networks, inAdvances in Chemical Physics, vol. 43, (Prigogine, I., and Rice, S. A., eds.), John Wiley, New York NY, pp. 1–215.

    Chapter  Google Scholar 

  7. Clarke, B. L. (1981),J. Chem. Phys. 75, 4970.

    Article  CAS  Google Scholar 

  8. Clarke, B. L. (1983), Qualitative Dynamics and Stability of Chemical Reaction Networks inChemical Applications of Topology and Graph Theory. (King, R. B. ed.), Elsevier, Amsterdam, pp. 322–357.

    Google Scholar 

  9. Field, R. J., Körös, E., and Noyes, R. M. (1972),J. Am. Chem. Sci. 94, 8649.

    Article  CAS  Google Scholar 

  10. Field, R. J., and Noyes, R. M. (1974),J. Chem. Phys. 60, 1877.

    Article  CAS  Google Scholar 

  11. Clarke, B. L. (1974),Faraday Symposium 9, 79.

    Google Scholar 

  12. Clarke, B. L. (1976),J. Chem. Phys. 64, 4165.

    Article  CAS  Google Scholar 

  13. Clarke, B. L. (1976),J. Chem. Phys. 64 4179.

    Article  CAS  Google Scholar 

  14. Jwo, J. J., and Noyes, R. M. (1975),J. Am. Chem. Soc. 97, 5422.

    Article  CAS  Google Scholar 

  15. Varga, M., Gyorgyi, L., and Körös, E. (1985),J. Am. Chem. Soc. 107, 4780.

    Article  CAS  Google Scholar 

  16. Clarke, B. L. (1981), inNonlinear Phenomena in Chemical Dynamics (Vidal, C., and Pacault, A. eds.), Springer-Verlag, Berlin, 1981, pp. 240–246.

    Google Scholar 

  17. Clarke, B. L. (1984), inNonequilibrium Dynamics in Chemical Systems, Vidal, C., and Pacault, A., eds.), Springer, New York, p. 218.

    Google Scholar 

  18. Von Hohenbalken, B., Clarke, B. L., and Lewis, J. E. (1987),J. Comp. Appl. Math. 19, 231.

    Article  Google Scholar 

  19. Aguda, B. (1986), Ph.D. Thesis, University of Alberta.

  20. Aguda, B., and Clarke, B. L. (1987),J. Chem. Phys.,87, 3461.

    Article  CAS  Google Scholar 

  21. Gantmacher, F. R. (1970),Applications of the Theory of Matrices, Interscience, NY.

    Google Scholar 

  22. Hill, T. L. (1966),J. Theor. Biol. 10, 442.

    Article  PubMed  CAS  Google Scholar 

  23. Clarke, B. L. (1978),SIAM J. Appl. Math. 35, 755.

    Article  Google Scholar 

  24. Clarson, D., Datta, B. N., Johnson, C. R., (1982),SIAM J. Alg. Disc. Meth. 3, 293.

    Article  Google Scholar 

  25. Clarke, B. L., submitted toLinear Algebra and Applications.

  26. Feinberg, M., and Horn, F. J. M. (1974),Chem. Eng. Sci. 29, 775.

    Article  CAS  Google Scholar 

  27. Clarke, B. L., and Jeffries, C. (1985),J. Chem. Phys. 82, 3107.

    Article  CAS  Google Scholar 

  28. Clarke, B. L., submitted toLinear Algebra and Applications.

  29. Larter, R., and Clarke, B. L. (1985),J. Chem. Phys. 83, 108.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, B.L. Stoichiometric network analysis. Cell Biophysics 12, 237–253 (1988). https://doi.org/10.1007/BF02918360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918360

Index Entries

Navigation