Skip to main content
Log in

Microquantitative determination of hesperidin by pulse perturbation of the oscillatory reaction system

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and reliable kinetic method for the determination of hesperidin (Hesp) is developed. It is based on potentiometric monitoring of the concentration perturbations of the matrix reaction system which is in a stable non-equilibrium stationary state close to the bifurcation point. The Bray–Liebhafsky oscillatory reaction is used as the matrix system. The response of the matrix to perturbations by different concentrations of Hesp is followed by using a Pt electrode. A linear relationship between maximal potential shift and the logarithm of Hesp concentrations is obtained between 7.5 and 599.4 μg mL−1. The limit of detection is 0.65 μg mL−1. The described procedure has been successfully applied to the determination of Hesp from different sources (capsules, industrial and hand-squeezed orange juice, and white wine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Timberlake CF, Bridle P (1975) Harborne JB, Mabry TJ, Marby H (eds) The flavonoids. Academic Press, New York

  2. El-Shafae AM, El-Domianty MM (2001) J Pharm Biomed Anal 264:539–545

    Article  Google Scholar 

  3. Baldi A, Rosen RT, Fukuda EK, Ho C (1995) J Cromatogr A 718:89–97

    CAS  Google Scholar 

  4. Sontag G (1981) Z Anal Chem 309:109–113

    CAS  Google Scholar 

  5. Volikakis GJ, Efstathiou CE (2000) Talanta 51:775–785

    Article  CAS  Google Scholar 

  6. Zoulis NE, Efstathiou CE (1996) Anal Chim Acta 320:255–261

    Article  Google Scholar 

  7. Obendorf D, Reichart E (1995) Elecroanalysis 7:1075–1081

    CAS  Google Scholar 

  8. Barthe GA, Jourdan PS, McIntosh CA, Mansell RL (1988) Phytochemistry 27(1):249–254

    CAS  Google Scholar 

  9. Malešev D, Radović Z, Kuntić V, Kosanić M (1997) Anal Lett 30(5):917–926

    Google Scholar 

  10. Radović Z, Malešev D, Jelikić-Stankov M (1996) Pharmazie 51:8–9

    Google Scholar 

  11. Perez-Ruiz T, Martinez-Lozano C, Tomas V, Fenoll J (1999) Fresenius J Anal Chem 364:279–283

    Google Scholar 

  12. Jiménez-Prieto R, Silva M, Pérez-Bendito D (1995) Anal Chem 67:729–734

    Google Scholar 

  13. Jiménez-Prieto R, Silva M, Pérez-Bendito D (1996) Anal Chim Acta 44:53–60

    Article  Google Scholar 

  14. Vukojević V, Pejić N, Stanisavljev D, Anić S, Kolar-Anić Lj (1999) Analyst 124:147–152

    Article  Google Scholar 

  15. Vukojević V, Pejić N, Stanisavljev D, Anić S, Kolar-Anić Lj (2001) Pharmazie 56(III):1–2

    Google Scholar 

  16. Pejić N, Anić S, Kuntić V, Vukojević V, Kolar-Anić Lj (2003) Mikrochim Acta 143:261–267

    Google Scholar 

  17. Bray WC (1921) J Am Chem Soc 43:1262–1267

    CAS  Google Scholar 

  18. Edelson D, Noyes RM (1979) J Phys Chem 83:212–220

    CAS  Google Scholar 

  19. Kolar-Anić Lj, Schmitz G (1992) J Chem Soc Faraday Trans 88:2343–2349

    Article  Google Scholar 

  20. Kolar-Anić Lj, Čupić Ž, Anić S, Schmitz G (1997) J Chem Soc Faraday Trans 93:2147–2152

    Article  Google Scholar 

  21. Kissimonová K, Valent I, Adamčíková Lj, Ševčík P (2001) Chem Phys Lett 341:345–350

    Article  Google Scholar 

  22. Gray P, Scott S (1990) Chemical oscillations and instabilities: nonlinear chemical kinetics, Oxford University Press, Oxford, Chap 8, pp 211–217

    Google Scholar 

  23. Vukojević V, Anić S, Kolar-Anić Lj (2000) J Phys Chem A 104(46):10731–10739

    Article  Google Scholar 

  24. Miller JC, Miller N (1988) Statistics for analytical chemistry, 3rd edn. Ellis Horwood Ltd, 53, Chap 5, pp 101–117

  25. Pupin AM, Dennis MJ, Toledo MCF (1998) Food Chem 61:275–280

    CAS  Google Scholar 

  26. Achilli G, Cellerino GP, Gamache PH (1993) J Chromatogr 632:111–117

    CAS  Google Scholar 

Download references

Acknowledgements

The investigations were partially supported by The Ministry of Sciences and Environmental Protection Technologies and Development of Serbia, under the Project 1448.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Pejić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pejić, N., Blagojević, S., Anić, S. et al. Microquantitative determination of hesperidin by pulse perturbation of the oscillatory reaction system. Anal Bioanal Chem 381, 775–780 (2005). https://doi.org/10.1007/s00216-004-2913-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2913-6

Keywords

Navigation