Skip to main content
Log in

Asymmetric quantum dialogue in noisy environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A notion of asymmetric quantum dialogue (AQD) is introduced. Conventional protocols of quantum dialogue are essentially symmetric as the users (Alice and Bob) can encode the same amount of classical information. In contrast, the proposed scheme for AQD provides different amount of communication powers to Alice and Bob. The proposed scheme offers an architecture, where the entangled state to be used and the encoding scheme to be shared between Alice and Bob depend on the amount of classical information they want to exchange with each other. The general structure for the AQD scheme has been obtained using a group theoretic structure of the operators introduced in Shukla et al. (Phys Lett A 377:518, 2013). The effect of different types of noises (e.g., amplitude damping and phase damping noise) on the proposed scheme is investigated, and it is shown that the proposed scheme for AQD is robust and it uses an optimized amount of quantum resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)

    Article  MathSciNet  Google Scholar 

  8. Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)

    Article  ADS  Google Scholar 

  9. Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22, 22 (2005)

    Article  ADS  Google Scholar 

  10. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  11. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Yu, Z.B., Gong, L.H., Wen, R.H.: Novel multiparty controlled bidirectional quantum secure direct communication based on continuous-variable states. Int. J. Theor. Phys. 55, 1447 (2016)

    Article  MATH  Google Scholar 

  13. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. An, N.B.: Secure dialogue without a prior key distribution. J. Korean Phys. Soc. 47, 562 (2005)

    Google Scholar 

  15. Shi, G.-F.: Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt. Commun. 283, 5275 (2010)

    Article  ADS  Google Scholar 

  16. Wen, X., Liu, Y., Zhou, N.: Secure quantum telephone. Opt. Commun. 275, 278 (2007)

    Article  ADS  Google Scholar 

  17. Sun, Y., Wen, Q.-Y., Gao, F., Zhu, F.-C.: Improving the security of secure quantum telephone against an attack with fake particles and local operations. Opt. Commun. 282, 2278 (2009)

    Article  ADS  Google Scholar 

  18. Naseri, M.: An efficient protocol for quantum secure dialogue with authentication by using single photons. Int. J. Quantum Inf. 9, 1677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Eur. Phys. Lett. 87, 60008 (2009)

    Article  ADS  Google Scholar 

  20. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Thapliyal, K., Sharma, R. D., Pathak, A.: Orthogonal-State-based and semi-quantum protocols for quantum private comparison in noisy environment. arXiv:1608.00101 (2016)

  22. Xia, Y., Fu, C.-B., Zhang, S., Hong, S.-K., Yeon, K.-H., Um, C.-I.: Quantum dialogue by using the GHZ state. J. Korean Phys. Soc. 48, 24 (2006)

    Google Scholar 

  23. Dong, L., Xiu, X.-M., Gao, Y.-J., Chi, F.: Quantum dialogue protocol using a class of three-photon W states. Commun. Theor. Phys. 52, 853 (2009)

    Article  ADS  MATH  Google Scholar 

  24. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288 (2010)

    Article  ADS  Google Scholar 

  25. Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zhou, N.R., Hua, T.X., Wu, G.T., He, C.S., Zhang, Y.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53, 3829 (2014)

    Article  MATH  Google Scholar 

  27. Zhang, L.-L., Zhan, Y.-B.: Quantum dialogue by using the two-qutrit entangled states. Mod. Phys. Lett. B 23, 2993 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gao, G.: Information leakage in quantum dialogue by using the two-qutrit entangled states. Mod. Phys. Lett. B 28, 1450094 (2014)

    Article  ADS  Google Scholar 

  29. Yu, Z.B., Gong, L.H., Zhu, Q.B., Cheng, S., Zhou, N.R.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55, 3147 (2016)

    Article  MathSciNet  Google Scholar 

  30. Hwang, T., Luo, Y.-P.: Probabilistic authenticated quantum dialogue. Quantum Inf. Process. 14, 4631 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238 (2014)

    Article  ADS  Google Scholar 

  32. Ye, T.-Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14, 1487 (2015)

    Article  ADS  MATH  Google Scholar 

  33. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12, 2131 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. A 92, 017901 (2004)

    ADS  Google Scholar 

  37. Chang, C.H., Yang, C.W., Hzu, G.R., Hwang, T., Kao, S.H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)

    MATH  Google Scholar 

  41. Verstraete, F., Dehaene, J., Moor, B.De, Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  42. Chterental, O., Djokovic, D.Z.: Normal forms and tensor ranks of pure states of four qubits. In: Ling, G.D. (ed.) Linear Algebra Research Advances, chap. 4, pp. 133–167. Nova Science, New York (2007)

    Google Scholar 

  43. Borsten, L., Dahanayake, D., Duff, M.J., Marrani, A., Rubens, W.: Four-qubit entanglement classification from string theory. Phys. Rev. Lett. 105, 100507 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  46. Lin, C.Y., Yang, C.W., Hwang, T.: Authenticated quantum dialogue based on Bell states. Int. J. Theor. Phys. 54, 780 (2015)

    Article  MATH  Google Scholar 

  47. Kanamori, Y., Yoo, S.M., Gregory, D.A., Sheldon, F.T.: On quantum authentication protocols. In: IEEE Global Telecommunications Conference (GLOBECOM ’05), vol. 3. IEEE (2005)

  48. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A. 62, 022305 (2000)

    Article  ADS  Google Scholar 

  49. Zhang, Z., Zeng, G., Zhou, N., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A. 356, 199 (2006)

    Article  ADS  MATH  Google Scholar 

  50. Wang, M., Ma, W., Shen, D., Wang, L.: A quantum dialogue protocol based on four-qubit entangled state. Int. J. Theor. Phys. 54, 1388 (2015)

    Article  MATH  Google Scholar 

  51. Song, J., Zhang, S.: Comment on: “Quantum exam”. Phys. Lett. A 350, 174 (2006)

    Article  Google Scholar 

  52. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  53. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  54. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  55. Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quantum Inf. 6, 325 (2008)

    Article  Google Scholar 

  56. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AB acknowledges support from the Council of Scientific and Industrial Research, Government of India (Scientists’ Pool Scheme). CS thanks Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for JSPS Fellows No. 15F15015. She also thanks IISER Kolkata for the hospitality provided during the initial phase of the work. KT and AP thank Defense Research and Development Organization (DRDO), India, for the support provided through the Project No. ERIP/ER/1403163/M/01/1603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Appendix: Modified Pauli groups and the notation used

Appendix: Modified Pauli groups and the notation used

Modified Pauli groups and the notations used to denote them in the present work were introduced earlier in [20, 39]. Here, for consistency, we briefly summarize the definition and the notation used.

It is easy to verify that the set of Pauli operators \(\{I_{2}, \sigma _{x}, i\sigma _{y}, \sigma _{z}\}\) forms a group under multiplication \(G_{1}^{\prime }=\{ \pm I_{2},\pm iI_{2},\pm \sigma _{x},\pm i\sigma _{x},\pm \sigma _{y},\pm i\sigma _{y},\pm \sigma _{z},\pm i\sigma _{z}\} \) (cf. Section 10.5.1 of [40]). The closure property of \(G_{1}^{\prime }\) is satisfied under normal matrix multiplication because of the inclusion of ±1 and ±i. However, if any of the operators \(\sigma _{i},-\sigma _{i}, i\sigma _{i}\) or \(-i\sigma _{i}\) operates on a quantum state, the effect would be the same. Keeping this in mind, if global phase is ignored from the product of matrices (which is consistent with quantum mechanics), we obtain a modified Pauli group \(G_{1}=\{I_{2}, \sigma _{x}, i\sigma _{y}, \sigma _{z}\}=\{I_{2},X, iY, Z\}\). Clearly, under the above-defined multiplication rule, \(G_{1}\) is an Abelian group of order 4 and its generators are \(\langle X,Z\rangle ,\langle X,iY\rangle \) and \(\langle iY,Z\rangle \). Similarly, we may define the modified generalized Pauli group \(G_{n}=G_{1}^{\otimes n}\) as a group of order \(2^{2^{n}}=4^{n}\) and whose elements are all n-fold tensor products of Pauli matrices [20]. For example,

$$\begin{aligned} G_{2}= & {} G_{1}\otimes G_{1}=\{I_{2}, X, iY,\,Z\}\otimes \{I_{2},X,\,iY,Z\}\nonumber \\= & {} \left\{ I_{2}\otimes I_{2},I_{2}\otimes X,I_{2}\otimes iY,I_{2}\otimes Z,X\otimes I_{2},X\otimes X,\right. \nonumber \\&X\otimes iY,X\otimes Z,iY\otimes I_{2},iY\otimes X,iY\otimes iY,\nonumber \\&\left. iY\otimes Z,Z\otimes I_{2},Z\otimes X,Z\otimes iY,Z\otimes Z\right\} . \end{aligned}$$
(14)

In Ref. [20], it was discussed in detail how to construct subgroups of \(G_{2}\). Here, we list 11 subgroups of \(G_{2}\), which are used in this paper (each is of order 8):

$$\begin{aligned} G_{2}^{1}(8)= & {} \left\{ I_{2}\otimes I_{2}, X\otimes I_{2}, iY\otimes I_{2}, Z\otimes I_{2}, I_{2}\otimes X, X\otimes X, iY\otimes X, Z\otimes X\right\} ,\nonumber \\ G_{2}^{2}(8)= & {} \left\{ I_{2}\otimes I_{2}, X\otimes I_{2}, iY\otimes I_{2}, Z\otimes I_{2}, I_{2}\otimes iY, X\otimes iY, iY\otimes iY, Z\otimes iY\right\} ,\nonumber \\ G_{2}^{3}(8)= & {} \left\{ I_{2}\otimes I_{2}, X\otimes I_{2}, iY\otimes I_{2}, Z\otimes I_{2}, I_{2}\otimes Z, X\otimes Z, iY\otimes Z, Z\otimes Z\right\} ,\nonumber \\ G_{2}^{4}(8)= & {} \left\{ I_{2}\otimes I_{2}, I_{2}\otimes X, I_{2}\otimes iY, I_{2}\otimes Z, X\otimes I_{2}, X\otimes X, X\otimes iY, X\otimes Z\right\} \nonumber \\ G_{2}^{5}(8)= & {} \left\{ I_{2}\otimes I_{2}, I_{2}\otimes X, I_{2}\otimes iY, I_{2}\otimes Z, iY\otimes I_{2}, iY\otimes X, iY\otimes iY, iY\otimes Z\right\} \nonumber \\ G_{2}^{6}(8)= & {} \left\{ I_{2}\otimes I_{2}, I_{2}\otimes X, I_{2}\otimes iY, I_{2}\otimes Z, Z\otimes I_{2}, Z\otimes X, Z\otimes iY, Z\otimes Z\right\} \nonumber \\ G_{2}^{7}(8)= & {} \left\{ I_{2}\otimes I_{2},I_{2}\otimes Z,Z\otimes I_{2},Z\otimes Z,X\otimes X,iY\otimes X,X\otimes iY,iY\otimes iY\right\} ,\nonumber \\ G_{2}^{8}(8)= & {} \left\{ I_{2}\otimes I_{2},Z\otimes Z,X\otimes iY,iY\otimes X,I_{2}\otimes X, Z\otimes iY, iY\otimes I_{2}, X\otimes Z\right\} ,\nonumber \\ G_{2}^{9}(8)= & {} \left\{ I_{2}\otimes I_{2},Z\otimes Z,X\otimes iY,iY\otimes X,X\otimes I_{2},iY\otimes Z,Z\otimes X,I_{2}\otimes iY\right\} ,\nonumber \\ G_{2}^{10}(8)= & {} \left\{ I_{2}\otimes I_{2},X\otimes I_{2},I_{2}\otimes X,X\otimes X,Z\otimes Z,iY\otimes Z,Z\otimes iY,iY\otimes iY\right\} ,\nonumber \\ G_{2}^{11}(8)= & {} \left\{ I_{2}\otimes I_{2},iY\otimes I_{2},I_{2}\otimes iY,iY\otimes iY,Z\otimes Z,Z\otimes X,X\otimes Z,X\otimes X\right\} ,\nonumber \\ \end{aligned}$$
(15)

where \(G_{n}^{j}(m)\) denotes jth subgroup of order \(m<4^{n}\) of the group \(G_{n}\) whose order is \(4^{n}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Shukla, C., Thapliyal, K. et al. Asymmetric quantum dialogue in noisy environment. Quantum Inf Process 16, 49 (2017). https://doi.org/10.1007/s11128-016-1508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1508-4

Keywords

Navigation