Skip to main content

Advertisement

Log in

Strengthened Fractional Sobolev Type Inequalities in Besov Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

A Correction to this article was published on 28 February 2024

This article has been updated

Abstract

The purpose of this article is twofold. The first is to strengthen fractional Sobolev type inequalities in Besov spaces via the classical Lorentz space. In doing so, we show that the Sobolev inequality in Besov spaces is equivalent to the fractional Hardy inequality and the iso-capacitary type inequality. Secondly, we will strengthen fractional Sobolev type inequalities in Besov spaces via capacitary Lorentz spaces associated with Besov capacities. For this purpose, we first study the embedding of the associated capacitary Lorentz space to the classical Lorentz space. Then, the embedding of the Besov space to the capacitary Lorentz space is established. Meanwhile, we show that these embeddings are closely related to the iso-capacitary type inequalities in terms of a new-introduced fractional (β,p,q)-perimeter. Moreover, characterizations of more general Sobolev type inequalities in Besov spaces have also been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Change history

References

  1. Adams, D.: A Note on Choquet Integrals with Respect to Hausdorff Capacity. Function Spaces and Applications, pp 115–124. Springer, Berlin (1988)

    Google Scholar 

  2. Adams, D.: The classification problem for capacities associated with the Besov and Triebel-Lizorkin spaces. PWN Polish Sci. Publ. 22, 9–24 (1989)

    MathSciNet  Google Scholar 

  3. Adams, D.: Besov capacity redux. J. Math. Sci. 162, 307–318 (2009)

    Article  MathSciNet  Google Scholar 

  4. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Acadmic Press, New York (2003)

    Google Scholar 

  5. Adams, D., Xiao, J.: Strong type estimates for homogeneous Besov capacities. Math. Ann. 325, 695–709 (2003)

    Article  MathSciNet  Google Scholar 

  6. Almgren, F., Lieb, E.: Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc. 2, 683–773 (1989)

    Article  MathSciNet  Google Scholar 

  7. Ambrosio, L., De Guido, P., Luca, M.: Gamma-convergence of nonlocal perimeter functionals. Manuscripta Mathematica 134, 377–403 (2011)

    Article  MathSciNet  Google Scholar 

  8. Beckner, W., Pearson, M.: On sharp Sobolev embedding and the logarithmic Sobolev inequalities. Bull. London Math. Soc. 30, 80–84 (1998)

    Article  MathSciNet  Google Scholar 

  9. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16, 419–458 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, a Volume in Honor of A. Bensoussans 60th birthday, pp 439–455. IOS Press (2001)

  11. Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. 171, 1903–1930 (2010)

    Article  MathSciNet  Google Scholar 

  12. Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Comm. Pure Appl. Math. 63, 1111–1114 (2010)

    Article  MathSciNet  Google Scholar 

  13. Caffarelli, L., Enrico, V.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Cal. Vari. Partial Differ. Equ. 41, 203–240 (2011)

    Article  MathSciNet  Google Scholar 

  14. Carlen, E., Loss, M.: Logarithmic Sobolev inequalities and spectral gaps. In: Recent Advances in the Theory and Applications of Mass Transport. Contemp. Math., vol. 353, pp 53–60. Amer. Math. Soc., Providence (2004)

  15. Cotsiolis, A., Tavoularis, N.: Sharp Sobolev type inequalities for higher fractional derivatives. C. R. Acad. Sci. Paris, Ser. I(335), 801–804 (2002)

    Article  MathSciNet  Google Scholar 

  16. Cotsiolis, A, Tavoularis, N: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)

    Article  MathSciNet  Google Scholar 

  17. Cotsiolis, A., Tavoularis, N.: On logarithmic Sobolev inequalities for higher order fractional derivatives. C. R. Acad. Sci. Paris, Ser. I(340), 205–208 (2005)

    Article  MathSciNet  Google Scholar 

  18. Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15, 519–527 (2002)

    Article  MathSciNet  Google Scholar 

  19. DelPino, M., Dolbeault, J.: The optimal Euclidian Lp −Sobolev logarithmic. Inequal. J. Funct. Anal. 197, 151–161 (2003)

    Article  Google Scholar 

  20. Fusco, N., Vincent, M., Massimiliano, M.: A quantitative isoperimetric inequality for fractional perimeters. J. Funct. Anal. 261, 697–715 (2011)

    Article  MathSciNet  Google Scholar 

  21. Frank, R., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \(\mathbb {R}\). Acta Math. 210, 261–318 (2013)

    Article  MathSciNet  Google Scholar 

  22. Frank, R., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    Article  MathSciNet  Google Scholar 

  23. Gross, L.: Logarithmic Sobolev inequalities. Amer. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  Google Scholar 

  24. Hajaiej, H., Yu, X., Zhai, Z.: Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms. J. Math. Anal. Appl. 396, 569–577 (2012)

    Article  MathSciNet  Google Scholar 

  25. Hurri-Syrjänen, R., Vähäkangas, A.: Characterizations to the fractional Sobolev inequality Complex analysis and dynamical systems VII (2017)

  26. Li, P., Hu, R., Zhai, Z.: Fractional Besov trace/extension type inequalities via the Caffarelli-Silvestre extension. Submitted

  27. Li, P., Shi, S., Hu, R., Zhai, Z.: Embeddings of function spaces via the Caffarelli-Silvestre extension, capacities and Wolff potentials. Nonlinear Anal. 217, 112758 (2022)

    Article  MathSciNet  Google Scholar 

  28. Lieb, E., Loss, M.: Analysis, 2nd. edn. Graduate Studies in Mathematics, vol. 14. AMS, Providence (2001)

    Google Scholar 

  29. Ludwig, M.: Anisotropic fractional Sobolev norms. Adv. Math. 252, 150–157 (2014)

    Article  MathSciNet  Google Scholar 

  30. Maz’ya, V.: On capacitary strong type estimates for fractional norms. Zup. Nauch. Sem. Leningrad otel. Math. Inst. Steklov (LOMI) 70, 161–168 (1977)

    Google Scholar 

  31. Merker, J.: Generalizations of logarithmic Sobolev inequalities. Discrete Contin. Dyn. Syst. Ser. S1, 329–338 (2008)

    MathSciNet  Google Scholar 

  32. Netrusov, Y.: Estimates of capacities associated with Besov spaces. J. Math. Sci. 78, 199–217 (1996)

    Article  MathSciNet  Google Scholar 

  33. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchiker’s guide to the fractional Sobolev spaces. Bull des Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  34. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Cal. Vari. Partial Differ. Equ. 50, 799–829 (2014)

    Article  MathSciNet  Google Scholar 

  35. Ponce, A., Spector, D.: A boxing inequalities for the fractional perimeter. Ann. Sc. Norm. Super. Pisa Cl. Sci. XX, 107–141 (2020)

    Google Scholar 

  36. Ponce, A.: A new approach to Sobolev spaces and connections to Γ-convergence. Calc. Var. Partial Differ. Equ. 19, 229–255 (2004)

    Article  MathSciNet  Google Scholar 

  37. Xiao, J.: A sharp Sobolev trace Inequalities for the fractional-order derivatives. Bull. Sci. Math. 130, 87–96 (2006)

    Article  MathSciNet  Google Scholar 

  38. Xiao, J.: Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation. Adv. Math. 207, 828–846 (2006)

    Article  MathSciNet  Google Scholar 

  39. Xiao, J.: A sharp Sobolev trace Inequalities for the fractional-order derivatives. Bull. Sci. Math. 130, 87–96 (2006)

    Article  MathSciNet  Google Scholar 

  40. Xiao, J.: The sharp Sobolev and isoperimetric inequalities split twice. Adv. Math. 211, 417–435 (2007)

    Article  MathSciNet  Google Scholar 

  41. Xiao, J.: Optimal geometric estimates for fractional Sobolev capacities. C. R. Math. Acad. Sci. Paris 354, 149–153 (2016)

    Article  MathSciNet  Google Scholar 

  42. Xiao, J., Zhai, Z.: Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev inequalities under Lorentz norms. J. Math. Science 166, 357–376 (2010)

    Article  MathSciNet  Google Scholar 

  43. Xiao, J., Zhai, Z.: C.S.I. for Besov Spaces \(\dot {{\Lambda }}^{p,q}_{{\alpha }} (\mathbb {R}^{n})\) with (α, (p,q)) ∈ (0, 1) × (0, 1] × (0, 1](1, 1). Advanced Lectures in Mathematics Volume 34 Some Topics in Harmonic Analysis and Applications, 407–420 (2016)

  44. Wu, Z.: Strong type estimate and Carleson measures for Lipschitz spaces. Proc. Amer. Math. Soc. 127, 3243–3249 (1999)

    Article  MathSciNet  Google Scholar 

  45. Zhai, Z.: Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces. Nonlinear Anal. 73, 2611–2630 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Pengtao Li was supported by National Natural Science Foundation of China (No. 11871293, No. 12071272) and Shandong Natural Science Foundation of China (No. ZR2020MA004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichun Zhai.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported: Pengtao Li was supported by National Natural Science Foundation of China (No. 11871293, No. 12071272) and Shandong Natural Science Foundation of China (No. ZR2020MA004).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Hu, R. & Zhai, Z. Strengthened Fractional Sobolev Type Inequalities in Besov Spaces. Potential Anal 59, 2105–2121 (2023). https://doi.org/10.1007/s11118-022-10030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10030-z

Keywords

Mathematics Subject Classification (2010)

Navigation