Skip to main content
Log in

A new approach to Sobolev spaces and connections to \(\mathbf\Gamma\)-convergence

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract.

This is a follow-up of a paper of Bourgain, Brezis and Mironescu [2]. We study how the existence of the limit

$$\int_\Omega \! \int_\Omega \omega\left( \frac{|f(x)-f(y)|}{|x-y|} \right) \rho_\varepsilon(x-y) \, dx \, dy \quad \text{as $\varepsilon \downarrow 0$}, $$

for \(\omega : [0,\infty) \to [0,\infty) \) continuous and \((\rho_\varepsilon) \subset L^1({\mathbb R}^N)\) converging to \(\delta_0\), is related to the weak regularity of \(f \in L^1_{\rm loc}(\Omega)\). This approach gives an alternative way of defining the Sobolev spaces W 1,p. We also briefly discuss the \(\Gamma\)-convergence of (1) with respect to the \(L^1(\Omega)\)-topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37-86 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., (eds.) Optimal control and partial differential equations, pp 439-455 (A volume in honour of A. Benssoussan’s 60th birthday). IOS Press, 2001

  3. Brezis, H.: How to recognize constant functions. Connections with Sobolev spaces. (To appear)

  4. Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations. (Pitman Research Notes in Mathematics Series, Vol. 207). Harlow: Longman 1989

  5. Corbo Esposito, A., De Arcangelis, R.: Comparison results for some types of relaxation of variational integral functionals. Ann. Mat. Pura Appl. 164, 155-193 (1993)

    MATH  Google Scholar 

  6. Dávila, J.: On an open question about functions of bounded variation. Cal. Var. PDE. (To appear)

  7. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58, 842-850 (1975)

    MATH  Google Scholar 

  8. Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel. Chapitres I á IV. (Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV. Actualités Scientifiques et Industrielles, No. 1372) Paris: Hermann 1975

  9. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Boca Raton, FL: CRC Press 1992

  10. Gobbino, M.: Finite difference approximation of the Mumford-Shah functional. Comm. Pure Appl. Math. 51, 197-228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gobbino, M., Mora, M.G.: Finite-difference approximation of free-discontinuity problems. Proc. Roy. Soc. Edinburgh Sect. A 131, 567-595 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159-178 (1964)

    MATH  Google Scholar 

  13. Ignat, R.: On an open problem about how to recognize constant functions, to appear in Houston J. Math.

  14. Masja, W., Nagel J.: Über äquivalente Normierung der anisotropen Funktionalräume \(H\sp{\mu }({\mathbb R}\sp{n})\). Beiträge Anal. 12, 7-17 (1978)

    MATH  Google Scholar 

  15. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. (Monographs and Textbooks in Pure and Applied Mathematics, Vol. 146). New York: Marcel Dekker 1991 small

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto C. Ponce.

Additional information

Received: 12 November 2002, Accepted: 7 January 2003, Published online: 22 September 2003

Mathematics Subject Classification (2000):

46E35, 49J45

Augusto C. Ponce: ponce@ann.jussieu.fr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponce, A.C. A new approach to Sobolev spaces and connections to \(\mathbf\Gamma\)-convergence. Cal Var 19, 229–255 (2004). https://doi.org/10.1007/s00526-003-0195-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-003-0195-z

Keywords

Navigation