Skip to main content
Log in

On the sharp Hardy inequality in Sobolev–Slobodeckiĭ spaces

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study the sharp constant in the Hardy inequality for fractional Sobolev spaces defined on open subsets of the Euclidean space. We first list some properties of such a constant, as well as of the associated variational problem. We then restrict the discussion to open convex sets and compute such a sharp constant, by constructing suitable supersolutions by means of the distance function. Such a method of proof works only for \(s\,p\ge 1\) or for \(\Omega \) being a half-space. We exhibit a simple example suggesting that this method can not work for \(s\,p<1\) and \(\Omega \) different from a half-space. The case \(s\,p<1\) for a generic convex set is left as an interesting open problem, except in the Hilbertian setting (i.e. for \(p=2\)): in this case we can compute the sharp constant in the whole range \(0<s<1\). This completes a result which was left open in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data files are attached to this paper.

Notes

  1. It should be noticed that such a formula contains a small typo: the “regional” term \({\mathcal {C}}(u,u)\) should be replaced by the “global” one \({\mathcal {K}}(u,u)\), in the notation of [4].

  2. For \(N\ge 2\), such a constant could be explicitly computed in terms of the Gamma function, see for example the proof of [28, Lemma 2.4]. An alternative expression for this constant can be found in Lemma B.1 below. For our purposes, the explicit expression is not very important and we prefer not to appeal to it. Observe that \(C_{N,s\,p}\) depends on s and p only through their product \(s\,p\).

  3. This follows by noticing that the function

    $$\begin{aligned} h(\varepsilon )=\left( \frac{1}{2}\,\left( a+\varepsilon \right) ^{p} + \frac{1}{2}\, \left( b+\varepsilon \right) ^p \right) ^\frac{1}{p}-\varepsilon , \quad \text{ for } \text{ every } a, b\ge 0, \end{aligned}$$

    is monotone decreasing with respect to \(\varepsilon \ge 0\), thus \(h(\varepsilon )\le h(0)\).

  4. Observe that by construction \(t-\varepsilon > 0\) and \(t+\varepsilon <1/2\).

  5. Of course, this will be possible because in \({\mathbb {R}}\) points have zero fractional capacity of order \(s\le 1/2\), i.e. they are removable sets.

References

  1. Ancona, A.: On strong barriers and inequality of Hardy for domains in \({\mathbb{R} }^n\). J. Lond. Math. Soc. 34, 274–290 (1986)

    Article  MATH  Google Scholar 

  2. Bianchi, F., Brasco, L., Sk, F., Zagati, A.C.: A note on the supersolution method for Hardy’s inequality. Rev. Mat. Complut. https://doi.org/10.1007/s13163-023-00460-7(to appear)

  3. Bianchi, F., Stefani, G., Zagati, A.C.: Hardy’s inequality on fractional Sobolev spaces for \(p=1\) (in preparation)

  4. Bogdan, K., Dyda, B.: The best constant in a fractional Hardy inequality. Math. Nachr. 284, 629–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogdan, K., Grzywny, T., Pietruska-Pałuba, K., Rutkowski, A.: Nonlinear nonlocal Douglas identity. Calc. Var. Partial Differ. Equ. 62, Paper No. 151 (2023)

  6. Bogdan, K., Jakubowski, T., Lenczewska, J., Pietruska-Pałuba, K.: Optimal Hardy inequality for the fractional Laplacian on \(L^p\). J. Funct. Anal. 282, 109395 (2022)

    Article  MATH  Google Scholar 

  7. Bogdan, K., Zak, T.: On Kelvin transformation. J. Theor. Probab. 19, 89–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brasco, L., Cinti, E.: On fractional Hardy inequalities in convex sets. Discrete Contin. Dyn. Syst. 38, 4019–4040 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brasco, L., Franzina, G.: Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J. 37, 769–799 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p-\)Laplacian. Adv. Calc. Var. 9, 323–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brasco, L., Parini, E., Squassina, M.: Stability of variational eigenvalues for the fractional \(p-\)Laplacian. Discrete Contin. Dyn. Syst. 36, 1813–1845 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brasco, L., Mosconi, S., Squassina, M.: Optimal decay of extremals for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55, Art. 23 (2016)

  13. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bucur, D.: Some observations on the Green function for the ball in the fractional Laplace framework. Commun. Pure Appl. Anal. 15, 657–699 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davies, E.B.: The Hardy constant. Q. J. Math. Oxf. Ser. (2) 46, 417–431 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Davies, E.B.: Heat kernels and spectral theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)

  18. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dyda, B., Kijaczko, M.: On density of compactly supported smooth functions in fractional Sobolev spaces. Ann. Mat. Pura Appl. (4) 201, 1855–1867 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dyda, B.: Fractional Hardy inequality with a remainder term. Colloq. Math. 122, 59–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dyda, B.: A fractional order Hardy inequality. Ill. J. Math. 48, 575–588 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer \(G\)-function. Constr. Approx. 45, 427–448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dyda, B., Vähäkangas, A.V.: A framework for fractional Hardy inequalities. Ann. Acad. Sci. Fenn. Math. 39, 675–689 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Edmunds, D.E., Hurri-Syrjänen, R., Vähäkangas, A.V.: Fractional Hardy-type inequalities in domains with uniformly fat complement. Proc. Amer. Math. Soc. 142, 897–907 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Edmunds, D.E., Hurri-Syrjänen, R.: Remarks on the Hardy inequality. J. Inequal. Appl. 1, 125–137 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Filippas, S., Moschini, L., Tertikas, A.: Sharp trace Hardy–Sobolev–Maz’ya inequalities and the fractional Laplacian. Arch. Ration. Mech. Anal. 208, 109–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fiscella, A., Servadei, R., Valdinoci, E.: Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40, 235–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Frank, R.L., Seiringer, R.: Sharp fractional Hardy inequalities in half-spaces. In: Around the Research of Vladimir Maz’ya. I, pp. 161–167, Int. Math. Ser. (N. Y.), vol. 11. Springer, New York (2010)

  29. Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Franzina, G., Palatucci, G.: Fractional \(p-\)eigenvalues. Riv. Mat. Univ. Parma 5, 315–328 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Hajlasz, P.: Pointwise Hardy inequalities. Proc. Amer. Math. Soc. 127, 417–423 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hmissi, F.: Fonctions harmoniques pour les potentiels de Riesz sur la boule unité. Expo. Math. 12, 281–288 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam. 32, 1353–1392 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kijaczko, M., Lenczewska, J.: Sharp Hardy inequalities for Sobolev-Bregman forms. Math. Nacr. https://doi.org/10.1002/mana.202100494(to appear)

  35. Kinnunen, J., Martio, O.: Hardy’s inequalities for Sobolev functions. Math. Res. Lett. 4, 489–500 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Laptev, A., Sobolev, A.V.: Hardy inequalities for simply connected planar domains. Spectral theory of differential operators, pp. 133–140, Amer. Math. Soc. Transl. Ser. 2, vol. 225, Adv. Math. Sci., vol. 62. Amer. Math. Soc., Providence (2008)

  37. Lewis, J.L.: Uniformly fat sets. Trans. Amer. Math. Soc. 308, 177–196 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Loss, M., Sloane, C.: Hardy inequalities for fractional integrals on general domains. J. Funct. Anal. 259, 1369–1379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marcus, M., Mizel, V.J., Pinchover, Y.: On the best constant for Hardy’s inequality in \({\mathbb{R} }^n\). Trans. Amer. Math. Soc. 350, 3237–3255 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Marcus, M., Shafrir, I.: An eigenvalue problem related to Hardy’s \(L^p\) inequality. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29, 581–604 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Matskewich, T., Sobolevskii, P.E.: The best possible constant in generalized Hardy’s inequality for convex domain in \({\mathbb{R} }^n\). Nonlinear Anal. 28, 1601–1610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342. Springer, Heidelberg (2011)

  43. Mohanta, K., Sk, F.: On the best constant in fractional \(p\)-Poincaré inequalities on cylindrical domains. Differ. Integral Equ. 34, 691–712 (2021)

    MATH  Google Scholar 

  44. Nečas, J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa (3) 16, 305–326 (1962)

    MathSciNet  MATH  Google Scholar 

  45. Opic, B., Kufner, A.: Hardy-type inequalities. Pitman Research Notes in Mathematics Series, vol. 219. Longman Scientific and Technical, Harlow (1990)

  46. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sk, F.: Characterizations of fractional Sobolev–Poincaré and (localized) Hardy inequalities. J. Geom. Anal. 33, Paper No. 223 (2023)

  48. Wannebo, A.: Hardy inequalities. Proc. Amer. Math. Soc. 109, 85–95 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Eleonora Cinti for several useful discussions and for her kind interest towards the present work. We are also grateful to Giovanni Franzina and Simon Larson for some discussions, as well as to Bartłomiej Dyda for some bibliographical references. L. B. wishes to warmly express his gratitude to Pierre Bousquet, for a clarifying discussion on the integrability of the distance function, during a staying at the Institute of Applied Mathematics and Mechanics of the University of Warsaw, in the context of the Thematic Research Programme: “Anisotropic and Inhomogeneous Phenomena”. Iwona Chlebicka and Anna Zatorska-Goldstein are gratefully acknowledged for their kind invitation and the nice working atmosphere provided during the whole staying. F. B. and A. C. Z. are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The three authors gratefully acknowledge the financial support of the projects FAR 2019 and FAR 2020 of the University of Ferrara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Chiara Zagati.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Negative powers of the distance in the borderline case \(s=1/2\)

We consider for \(-1<\beta <0\)

$$\begin{aligned} U_\beta (t)=d_I(t)^\beta =\left( \min \{t,1-t\}\right) ^\beta ,\qquad \text{ for } t\in I=(0,1). \end{aligned}$$

We extend this function by 0 outside the interval I. We want to estimate its fractional Laplacian of order 1/2.

Lemma A.1

Under the assumptions above, we have

$$\begin{aligned} (-\Delta )^\frac{1}{2} U_\beta \le \beta \,H(t)\,U_\beta (t)+\frac{2}{t\,(1-t)}\,U_\beta (t),\qquad \text{ in } I, \end{aligned}$$
(A.1)

in weak sense, where H is the continuous function on \(I{\setminus }\{1/2\}\) defined by

$$\begin{aligned} H(t)=-\frac{2}{t\,(1-t)}+\frac{2}{d_I(t)}\,\log \left( \frac{4\,t\,(1-t)}{(1-2\,t)^2}\right) . \end{aligned}$$

This has the following properties:

  • it is symmetric with respect to 1/2, i.e.

    $$\begin{aligned} H(t)=H(1-t),\qquad \text{ for } t\in I{\setminus }\left\{ \frac{1}{2}\right\} ; \end{aligned}$$
  • it belongs to \(L^q_{\textrm{loc}}(I)\) for every \(1\le q<\infty \);

  • it satisfies

    $$\begin{aligned} H(t)\sim - 4\,\log \left( \frac{1}{2}-t\right) ^2,\qquad \text{ for } t\rightarrow \frac{1}{2}, \end{aligned}$$

    thus the right-hand side of (A.1) diverges to \(-\infty \) as t approaches 1/2.

In particular, in this case the function \(U_\beta \) is not even locally weakly (1/2)-superharmonic on I.

Proof

Observe that \(U_\beta \in W^{s,2}_{\textrm{loc}}(I)\cap L^1_{1}({\mathbb {R}})\), under the assumption \(-1<\beta <0\). We first show that \(U_\beta \) satisfies (A.1) in \(I{\setminus }\{1/2\}\). Let us take \(\varphi \in C^\infty _0(I{\setminus }\{1/2\})\) non-negative, then there exists \(0<\delta _0<1/4\) such that its support is contained in the set

$$\begin{aligned} {\mathcal {I}}_{\delta _0}=\left[ \delta _0,\frac{1}{2}-\delta _0\right] \cup \left[ \frac{1}{2}+\delta _0,1-\delta _0\right] . \end{aligned}$$

For every \(\varepsilon >0\) and \(t\in I\), we set

$$\begin{aligned} {\mathfrak {I}}_\varepsilon (t)=(t-\varepsilon ,t+\varepsilon )\qquad \text{ and } \qquad {\mathcal {D}}_\varepsilon =\Big \{(t,y)\in {\mathbb {R}}\times {\mathbb {R}}\, :\, t-\varepsilon \le y\le t+\varepsilon \Big \}. \end{aligned}$$

By using Fubini’s Theorem and a change of variable, we can write as usual

$$\begin{aligned}&\iint _{{\mathbb {R}}\times {\mathbb {R}}} \frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^{2}}\,dt\,dy\nonumber \\&\quad =\lim _{\varepsilon \rightarrow 0} \iint _{({\mathbb {R}}\times {\mathbb {R}}){\setminus }{\mathcal {D}}_\varepsilon }\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^{2}}\,dt\,dy\nonumber \\&\quad =2\,\lim _{\varepsilon \rightarrow 0} \int _{{\mathbb {R}}} \left( \int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (t)} \frac{U_\beta (t)-U_\beta (y)}{|t-y|^{2}}\,dy\right) \,\varphi (t)\,dt\nonumber \\&\quad =2\,\lim _{\varepsilon \rightarrow 0} \int _{{\mathcal {I}}_{\delta _0}} \left( \int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (t)} \frac{U_\beta (t)-U_\beta (y)}{|t-y|^{2}}\,dy\right) \,\varphi (t)\,dt. \end{aligned}$$
(A.2)

We first observe that, by using that \(U_\beta (t)=U_\beta \left( 1-t\right) \), we have for \(t\in {\mathcal {I}}_{\delta _0}\)

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (t)} \frac{U_\beta (t)-U_\beta (y)}{|t-y|^{2}}\,dy&=\int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (t)} \frac{U_\beta (1-t)-U_\beta (1-y)}{|t-y|^{2}}\,dy\\&=\int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (t)}\frac{U_\beta (1-t)-U_\beta (1-y)}{|(1-t)-(1-y)|^{2}}\,dy\\&=\int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (1-t)} \frac{U_\beta (1-t)-U_\beta (\tau )}{|(1-t)-\tau |^{2}}\,d\tau . \end{aligned} \end{aligned}$$

This shows that it is sufficient to consider \(t\in [\delta _0,1/2-\delta _0]\). For almost every \(t\in [\delta _0,1/2-\delta _0]\) and every \(0<\varepsilon < \delta _0\), we haveFootnote 4

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (t)} \frac{U_\beta (t)-U_\beta (y)}{|t-y|^{2}}\,dy&=\int _0^{t-\varepsilon }\frac{t^\beta -y^\beta }{|t-y|^{2}}\,dy+\int _{t+\varepsilon }^\frac{1}{2} \frac{t^\beta -y^\beta }{|t-y|^{2}}\,dy\\&\quad +\int _\frac{1}{2}^1 \frac{t^\beta -(1-y)^\beta }{(y-t)^{2}}\,dy\\&\quad +\int _1^{+\infty } \frac{t^\beta }{(y-t)^{2}}\,dy+\int _{-\infty }^0 \frac{t^\beta }{(t-y)^{2}}\,dy\\&=\int _0^{t-\varepsilon }\frac{t^\beta -y^\beta }{|t-y|^{2}}\,dy +\int _{t+\varepsilon }^\frac{1}{2} \frac{t^\beta -y^\beta }{|t-y|^{2}}\,dy\\&\quad +\int _\frac{1}{2}^1 \frac{t^\beta -(1-y)^\beta }{(y-t)^{2}}\,dy\\&\quad +\frac{U_\beta (t)}{(1-t)}+\frac{U_\beta (t)}{t}. \end{aligned} \end{aligned}$$

To estimate the remaining integrals, we use the “above tangent” property for the convex function \(\tau \mapsto \tau ^\beta \), to infer that

$$\begin{aligned} t^\beta -y^\beta \le \beta \,t^{\beta -1}\,(t-y),\qquad \text{ for } y\in \left( 0,t-\varepsilon \right) \cup \left( t+\varepsilon ,\frac{1}{2}\right) , \end{aligned}$$

and

$$\begin{aligned} t^\beta -(1-y)^\beta \le \beta \,t^{\beta -1}\,(t+y-1),\qquad \text{ for } y\in \left( \frac{1}{2},1\right) . \end{aligned}$$

These yield

$$\begin{aligned} \begin{aligned}&\int _0^{t-\varepsilon } \frac{t^\beta -y^\beta }{|t-y|^{2}}\,dy+\int _{t+\varepsilon }^\frac{1}{2} \frac{t^\beta -y^\beta }{|t-y|^{2}}\,dy+\int _\frac{1}{2}^1 \frac{t^\beta -(1-y)^\beta }{(y-t)^{2}}\,dy\\&\quad \le \beta \,t^{\beta -1}\,\int _0^{t-\varepsilon } \frac{t-y}{|t-y|^{2}}\,dy+\beta \,t^{\beta -1}\,\int _{t+\varepsilon }^\frac{1}{2} \frac{t-y}{|t-y|^{2}}\,dy+\beta \,t^{\beta -1}\\&\quad \int _\frac{1}{2}^1 \frac{(t+y-1)}{(y-t)^{2}}\,dy. \end{aligned} \end{aligned}$$

The last integrals can be explicitly computed. We have

$$\begin{aligned} \begin{aligned} \int _0^{t-\varepsilon } \frac{t-y}{|t-y|^{2}}\,dy&+\int _{t+\varepsilon }^{\frac{1}{2}} \frac{t-y}{|t-y|^{2}}\,dy =\log t-\log \left( \frac{1}{2}-t\right) , \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \int _{\frac{1}{2}}^1 \frac{(t+y-1)}{(y-t)^2}\,dy&=t\,\int _\frac{1}{2}^1 \frac{1}{(y-t)^2}\,dy+\int _{\frac{1}{2}}^1 \frac{y-1}{(y-t)^{2}}\,dy\\&=t\,\left[ \left( \frac{1}{2}-t\right) ^{-1}-(1-t)^{-1}\right] \\&\quad -\frac{1}{2}\,\left( \frac{1}{2}-t\right) ^{-1}+\left[ \log (1-t)-\log \left( \frac{1}{2}-t\right) \right] . \end{aligned} \end{aligned}$$

This finally gives that for \(t\in [\delta _0,1/2-\delta _0]\), we have

$$\begin{aligned} \int _{{\mathbb {R}}{\setminus } {\mathfrak {I}}_\varepsilon (t)} \frac{U_\beta (t)-U_\beta (y)}{|t-y|^{1+2\,s}}\,dy\le \beta \,t^{\beta -1}\,G(t)+\frac{U_\beta (t)}{t\,(1-t)}, \end{aligned}$$
(A.3)

where we set for simplicity

$$\begin{aligned} \begin{aligned} G(t)&=\left[ \log t-\log \left( \frac{1}{2}-t\right) \right] +t\,\left[ \left( \frac{1}{2}-t\right) ^{-1}-(1-t)^{-1}\right] \\&\quad -\frac{1}{2}\,\left( \frac{1}{2}-t\right) ^{-1}+\left[ \log (1-t)-\log \left( \frac{1}{2}-t\right) \right] . \end{aligned} \end{aligned}$$

With simple manipulations, we see that this can be also written as

$$\begin{aligned} \begin{aligned} G(t)&=-\frac{1}{1-t}+\log \left( \frac{4\,t\,(1-t)}{\left( 1-2\,t\right) ^2}\right) , \end{aligned} \end{aligned}$$

and thus this is a continuous function on (0, 1/2) such that

$$\begin{aligned} G\in L^q_{\textrm{loc}}((0,1/2]),\ \text{ for } \text{ every } 1\le q<\infty \qquad \text{ and } \qquad \lim _{t\rightarrow \left( \frac{1}{2}\right) ^-} G(t)=+\infty , \end{aligned}$$

because of the logarithmic term. If we now define

$$\begin{aligned} H(t):=2\,\frac{G(t)}{t},\; \text{ for } t\in \left( 0,\frac{1}{2}\right) \; \text{ and } \; H(t):=H(1-t),\quad \text{ for } t\in \left( \frac{1}{2},1\right) , \end{aligned}$$

from (A.2) and (A.3), by recalling that \(\varphi \) is non-negative we finally get

$$\begin{aligned} \begin{aligned} \iint _{{\mathbb {R}}\times {\mathbb {R}}}&\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^{2}}\,dt\,dy\\&\le \int _I \left[ \beta \,H(t)+ \frac{2}{t\,(1-t)}\right] \,U_\beta (t)\,\varphi (t)\,dt. \end{aligned} \end{aligned}$$

This shows that \(U_\beta \) is a local weak subsolution of the the claimed Eq. (A.1), at least in the open set \(I{\setminus }\{1/2\}\).

In order to show that \(U_\beta \) is a local weak subsolution on the whole interval I, it is sufficient to use a standard trick toFootnote 5 “fill the hole”. we take \(\varphi \in C^\infty _0(I)\) non-negative and for every natural number \(n\ge 5\) we take \(\psi _n\in C^\infty ({\overline{I}})\) such that

$$\begin{aligned} \psi _n\equiv 1 \text{ on } {\overline{I}}{\setminus }\left[ \frac{1}{2}-\frac{2}{n},\frac{1}{2}+\frac{2}{n}\right] ,\qquad \psi _n\equiv 0 \text{ on } \left[ \frac{1}{2}-\frac{1}{n},\frac{1}{2}+\frac{1}{n}\right] , \end{aligned}$$

and

$$\begin{aligned} 0\le \psi _n\le 1,\qquad |\psi _n'|\le C\,n. \end{aligned}$$

The seminorm of \(\psi _n\) can be estimated by using its properties and an interpolation inequality (see [11, Corollary 2.2]), i. e.

$$\begin{aligned}{}[\psi _n]^2_{W^{\frac{1}{2},2}(I)}=[1-\psi _n]_{W^{\frac{1}{2},2}(I)}^2\le & {} C\,\left( \int _I |\psi _n'|^2\,dt\right) ^\frac{1}{2}\,\left( \int _I |1-\psi _n|^2\,dt\right) ^\frac{1}{2}\\= & {} C\,\left( \int _{\frac{1}{2}-\frac{2}{n}}^{\frac{1}{2}+\frac{2}{n}}|\psi _n'|^2\,dt\right) ^\frac{1}{2}\,\left( \int _{\frac{1}{2}-\frac{2}{n}}^{\frac{1}{2}+\frac{2}{n}} |1-\psi _n|^2\,dt\right) ^\frac{1}{2}\le {\widetilde{C}}, \end{aligned}$$

where \({\widetilde{C}}\) does not depend on n. This in particular implies that the sequence \(\{\Psi _n\}_{n\ge 5}\subseteq L^2(I\times I)\) defined by

$$\begin{aligned} \Psi _n(t,y):=\frac{\psi _n(t)-\psi _n(y)}{|t-y|},\qquad \text{ for } \text{ a. } \text{ e. } (t,y)\in I\times I, \end{aligned}$$
(A.4)

is bounded in \(L^2(I\times I)\), since by construction

$$\begin{aligned} \Vert \Psi _n\Vert _{L^2(I\times I)}=[\psi _n]_{W^{\frac{1}{2},2}(I)}. \end{aligned}$$

Thus, up to a subsequence, it converges weakly in \(L^2(I\times I)\). Thanks to the properties of \(\psi _n\), such a limit function must coincide with the null one.

The test function \(\varphi \,\psi _n\) belongs to \(C^\infty _0(I{\setminus }\{1/2\})\) and is non-negative. From the first part we get

$$\begin{aligned}&\iint _{{\mathbb {R}}\times {\mathbb {R}}} \frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)\,\psi _n(t)-\varphi (y)\,\psi _n(y)\big )}{|t-y|^{2}}\,dt\,dy\nonumber \\&\quad \le \int _I {\left[ \beta \,H(t)+ \frac{2}{t\,(1-t)}\right] }\,U_\beta (t)\,\varphi (t)\,\psi _n(t)\,dt. \end{aligned}$$
(A.5)

We wish to pass to the limit in (A.5), as n goes to \(\infty \): for the right-hand side, it is easily seen that

$$\begin{aligned} \begin{aligned}&\lim _{n\rightarrow \infty }\int _I {\left[ \beta \,H(t)+ \frac{2}{t\,(1-t)}\right] }\,U_\beta (t)\,\varphi (t)\,\psi _n(t)\,dt\\&=\int _I {\left[ \beta \,H(t)+ \frac{2}{t\,(1-t)}\right] }\,U_\beta (t)\,\varphi (t)\,dt, \end{aligned} \end{aligned}$$

by the Dominated Convergence Theorem. As for the left-hand side, we split the integral as follows:

$$\begin{aligned} \begin{aligned}&\iint _{{\mathbb {R}}\times {\mathbb {R}}} \frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)\,\psi _n(t)-\varphi (y)\,\psi _n(y)\big )}{|t-y|^{2}}\,dt\,dy\\&\quad =\iint _{I''\times I''}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)\,\psi _n(t)-\varphi (y)\,\psi _n(y)\big )}{|t-y|^{2}}\,dt\,dy\\&\qquad +2\,\iint _{I'\times ({\mathbb {R}}{\setminus } I'')}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\varphi (t)\,\psi _n(t)}{|t-y|^{2}}\,dt\,dy, \end{aligned} \end{aligned}$$

where \(I'\subseteq I''\subseteq I\) and \(I'\) contains the support of \(\varphi \). For the last integral we can easily pass to the limit as n goes to \(\infty \), for the first one we proceed as follows

$$\begin{aligned} \begin{aligned}&\iint _{I''\times I''}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)\,\psi _n(t)-\varphi (y)\,\psi _n(y)\big )}{|t-y|^{2}}\,dt\,dy\\&\quad =\iint _{I''\times I''}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^{2}}\,\frac{\psi _n(t)+\,\psi _n(y)}{2}dt\,dy\\&\qquad +\iint _{I''\times I''}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\psi _n(t)-\psi _n(y)\big )}{|t-y|^{2}}\,\frac{\varphi (t)+\,\varphi (y)}{2}dt\,dy. \end{aligned} \end{aligned}$$

By using that

$$\begin{aligned} \frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^2}\in L^1(I''\times I''), \end{aligned}$$

and the properties of \(\psi _n\), we get that

$$\begin{aligned} \begin{aligned}&\lim _{n\rightarrow \infty }\iint _{I''\times I''}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^{2}}\,\frac{\psi _n(t)+\,\psi _n(y)}{2}dt\,dy\\&\quad =\iint _{I''\times I''}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^{2}}\,dt\,dy, \end{aligned} \end{aligned}$$

again thanks to the Dominated Convergence Theorem. Finally, the last integral is the most delicate one: with the notation (A.4), we can write

$$\begin{aligned} \frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\psi _n(t)-\psi _n(y)\big )}{|t-y|^{2}}\,\frac{\varphi (t)+\,\varphi (y)}{2}=\Phi (t,y)\,\Psi _n(t,y), \end{aligned}$$

where

$$\begin{aligned} \Phi (t,y)=\frac{\Big (U_\beta (t)-U_\beta (y)\Big )}{|t-y|}\,\frac{\varphi (t)+\,\varphi (y)}{2}\in L^2(I''\times I''). \end{aligned}$$

The last property follows from the fact that \(U_\beta \) is locally Lipschitz on I. Thus, by using the weak convergence of \(\{\Psi _n\}_{n\ge 5}\) previously inferred, we get

$$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty }\iint _{I''\times I''}\frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\psi _n(t)-\psi _n(y)\big )}{|t-y|^{2}}\,\frac{\varphi (t)+\,\varphi (y)}{2}dt\,dy=0. \end{aligned} \end{aligned}$$

Finally, we obtain that we can pass to the limit in (A.5) as n goes to \(\infty \) and obtain

$$\begin{aligned} \iint _{{\mathbb {R}}\times {\mathbb {R}}} \frac{\Big (U_\beta (t)-U_\beta (y)\Big )\,\big (\varphi (t)-\varphi (y)\big )}{|t-y|^{2}}\,dt\,dy\\ \le \int _I {\left[ \beta \,H(t)+ \frac{2}{t\,(1-t)}\right] }\,U_\beta (t)\,\varphi (t)\,dt, \end{aligned}$$

for every \(\varphi \in C^\infty _0(I)\) non-negative, as desired. \(\square \)

Appendix B: The constant \(C_{N,s\,p}\)

For \(N\ge 2\), \(0<s<1\) and \(1<p<\infty \), we recall the definition

$$\begin{aligned} C_{N,s\,p}=(N-1)\,\omega _{N-1}\,\int _0^{+\infty } t^{N-2}\,(1+t^2)^{-\frac{N+s\,p}{2}}\,dt. \end{aligned}$$

In the next simple result, we write \(C_{N,s\,p}\) in an alternative way. This permits to compare the constant obtained in the proof of Theorem 6.6, with that of [38, Theorem 1.1].

Lemma B.1

Let \(N\ge 2\). Then we have

$$\begin{aligned} C_{N,s\,p}=\frac{1}{2}\,\int _{{\mathbb {S}}^{N-1}} |\omega _N|^{s\,p}\,d{\mathcal {H}}^{N-1}(\omega ). \end{aligned}$$

Proof

We first observe that by using spherical coordinates, we have

$$\begin{aligned} \int _{B_1(0)} |x_N|^{s\,p}\,dx= & {} \int _{{\mathbb {S}}^{N-1}} |\omega _N|^{s\,p}\,\left( \int _0^1\varrho ^{N-1+s\,p}\,d\varrho \right) \,d{\mathcal {H}}^{N-1}(\omega )\\= & {} \frac{1}{N+s\,p}\,\int _{{\mathbb {S}}^{N-1}} |\omega _N|^{s\,p}\,d{\mathcal {H}}^{N-1}(\omega ). \end{aligned}$$

Thus, in order to conclude, it is sufficient to show that

$$\begin{aligned} \frac{N+s\,p}{2}\,\int _{B_1(0)} |x_N|^{s\,p}\,dx=(N-1)\,\omega _{N-1}\,\int _0^{+\infty } t^{N-2}\,(1+t^2)^{-\frac{N+s\,p}{2}}\,dt. \end{aligned}$$

We compute again the integral on the left-hand side, this time by using cylindrical coordinates, i.e. we write

$$\begin{aligned} \begin{aligned} \int _{B_1(0)} |x_N|^{s\,p}\,dx&=\int _{-1}^1 \left( \int _{\{x\in B_1(0)\, :\, x_N=\tau \}}d{\mathcal {H}}^{N-1}\right) \,|\tau |^{s\,p}\,d\tau \\&=\omega _{N-1}\,\int _{-1}^1 (1-\tau ^2)^\frac{N-1}{2}\,|\tau |^{s\,p}\,d\tau \\&=2\,\omega _{N-1}\,\int _0^1 (1-\tau ^2)^\frac{N-1}{2}\,\tau ^{s\,p}\,d\tau . \end{aligned} \end{aligned}$$

We now use the change of variable \(\tau =(1+t^2)^{-1/2}\). This yields

$$\begin{aligned} \begin{aligned} \int _{B_1(0)} |x_N|^{s\,p}\,dx&=2\,\omega _{N-1}\,\int _0^{+\infty } (1+t^2)^{-\frac{s\,p}{2}}\,\frac{t^{N-1}}{(1+t^2)^\frac{N-1}{2}}\,\frac{t}{(1+t^2)^\frac{3}{2}}\,dt\\&=2\,\omega _{N-1}\,\int _0^{+\infty } t^N\,(1+t^2)^{-\frac{N+2+s\,p}{2}}\,dt. \end{aligned} \end{aligned}$$

In turn, by using an integration by parts, we get

$$\begin{aligned} \begin{aligned} \int _0^{+\infty } t^N\,(1+t^2)^{-\frac{N+2+s\,p}{2}}\,dt&=\left[ -\frac{1}{N+s\,p}\,t^{N-1}\,(1+t^2)^{-\frac{N+s\,p}{2}}\right] _{0}^{+\infty }\\&\quad +\frac{1}{N+s\,p}\,(N-1)\,\int _0^{+\infty } t^{N-2}\,(1+t^2)^{-\frac{N+s\,p}{2}}\,dt. \end{aligned} \end{aligned}$$

This concludes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, F., Brasco, L. & Zagati, A.C. On the sharp Hardy inequality in Sobolev–Slobodeckiĭ spaces. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02770-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00208-023-02770-z

Mathematics Subject Classification

Navigation