Skip to main content
Log in

Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We obtain an improved Sobolev inequality in \(\dot{H}^s\) spaces involving Morrey norms. This refinement yields a direct proof of the existence of optimizers and the compactness up to symmetry of optimizing sequences for the usual Sobolev embedding. More generally, it allows to derive an alternative, more transparent proof of the profile decomposition in \(\dot{H}^s\) obtained in Gérard (ESAIM Control Optim Calc Var 3:213–233, 1998) using the abstract approach of dislocation spaces developed in Tintarev and Fieseler (Concentration compactness. Functional-analytic grounds and applications. Imperial College Press, London, 2007). We also analyze directly the local defect of compactness of the Sobolev embedding in terms of measures in the spirit of Lions (Rev Mat Iberoamericana 1:145–201, 1985, Rev Mat Iberoamericana 1:45–121, 1985). As a model application, we study the asymptotic limit of a family of subcritical problems, obtaining concentration results for the corresponding optimizers which are well known when \(s\) is an integer (Rey in Manuscr Math 65:19–37, 1989, Han in Ann Inst Henri Poincaré Anal Non Linéaire 8:159–174, 1991, Chou and Geng in Differ Integral Equ 13:921–940, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We immediately refer to Sect. 2 for the basic definitions and some properties of the relevant spaces we deal with in the paper.

  2. We defer to [52, Chapter 3], and to Sect. 5 below for precise definitions.

References

  1. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (announced in C. R. Acad. Sci. Paris 280, 279–282 (1975)) (1976)

    Google Scholar 

  2. Bahouri, H., Gérard, P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999)

    Article  MATH  Google Scholar 

  3. Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brezis, H.: How to recognize constant functions. A connection with Sobolev spaces. Russ. Math. Surv. 57, 639–708 (2002)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Comm. Pure Appl. Math. 36, 437–477 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang, A., Gonzalez, M.d.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    Google Scholar 

  9. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chou, K.-S., Geng, D.: Asymptotic of positive solutions for a biharmonic equation involving critical exponent. Differ. Integral Equ. 13, 921–940 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Cotsiolis, A., Tavoularis, N.K.: Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. math. 136, 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Edmunds, D.E., Fortunato, D., Jannelli, E.: Critical exponents, critical dimensions and the biharmonic operator. Arch. Ration. Mech. Anal. 112, 269–289 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Escobar, J.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Flucher, M.: Variational problems with concentration. In: Progress in Nonlinear Differential Equations and their Applications, vol. 36. Birkhäuser Verlag, Basel (1999)

  16. Fanelli, L., Vega, L., Visciglia, N.: Existence of maximizers for Sobolev-Strichartz inequalities. Adv. Math. 229, 1912–1923 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frank, R., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gallagher, I.: Profile decomposition for solutions of the Navier-Stokes equations. Bull. Soc. Math. France 129, 285–316 (2001)

    MATH  MathSciNet  Google Scholar 

  19. Gérard, P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1998)

  20. Gérard, P., Meyer, Y., Oru, F.: Inégalités de Sobolev précisées. Séminaire sur les Équations aux Dérivées Partielles 1996–1997, École Polytech., Palaiseau., Exp. no. IV (1997)

  21. Gonzalez, M.D.M., Qing, J.: Fractional conformal Laplacians and fractional Yamabe problems. Anal. PDE, available at http://arxiv.org/abs/1012.0579

  22. Han, Z.-C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann. Inst. Henri Poincaré Anal. Non Linéaire 8, 159–174 (1991)

    Google Scholar 

  23. Hebey, E., Robert, F.: Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients. Calc. Var. Partial Differ. Equ. 13, 491–517 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jaffard, S.: Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal. 161, 384–396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kenig, C.E., Ponce, G., Vega, L.: On the concentration of blow up solutions for the generalized KdV equation critical in \(L^2\). In: Nonlinear Wave Equations (Providence, RI, 1998). Contemp. Math. 263, pp. 131–156. American Mathematical Society, Providence, RI (2000)

  27. Koch, G.: Profile decompositions for critical Lebesgue and Besov space embeddings. Indiana Univ. Math. J. 59, 1801–1830 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ledoux, M.: On improved Sobolev embedding theorems. Math. Res. Lett. 10, 659–669 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lemarié-Rieusset, P.G.: Recent developments in the Navier-Stokes problem, Research Notes in Mathematics 431. Chapman & Hall/CRC, Boca Raton (2002)

  30. Lieb, E.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 1. Rev. Mat. Iberoamericana 1, 145–201 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 2. Rev. Mat. Iberoamericana 1, 45–121 (1985)

    Article  MATH  Google Scholar 

  33. Maz’ya, V., Shaposhnikova, T.: Theory of Sobolev multipliers. With applications to differential and integral operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 337, Springer, Berlin (2009)

  34. Merle, F., Vega, L.: Compactness at blow-up time for \(L^2\) solutions of the critical nonlinear Schrödinger equation in 2D. Internat. Math. Res. Notices 1998, 399–425 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mironescu, P., Pisante, A.: A variational problem with lack of compactness for \(H^{1/2}(S^1;S^1)\) maps of prescribed degree. J. Funct. Anal. 217, 249–279 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Palatucci, G.: Subcritical approximation of the Sobolev quotient and a related concentration result. Rend. Sem. Mat. Univ. Padova 125, 1–14 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Palatucci, G.: \(p\)-Laplacian problems with critical Sobolev exponent. Asymptot. Anal. 73, 37–52 (2011)

    MATH  MathSciNet  Google Scholar 

  38. Palatucci, G., Pisante, A., Sire, Y.: Subcritical approximation of a Yamabe type non local equation: a Gamma-convergence approach. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5)

  39. Pucci, P., Serrin, J.: Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 69, 55–83 (1990)

    MATH  MathSciNet  Google Scholar 

  40. Rey, O.: Proof of the conjecture of H. Brezis and L. A. Peletier. Manuscr. Math. 65, 19–37 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sawyer, E., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114, 813–874 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sawano, Y., Sugano, S., Tanaka, H.: Generalized fractional integral operators and fractional maximal operators in the framework of Morrey spaces. Trans. Am. Math. Soc. 363, 6481–6503 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. (to appear)

  44. Solimini, S.: A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire 12, 319–337 (1995)

    Google Scholar 

  45. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  46. Swanson, C.: The best Sobolev constant. Appl. Anal. 47, 227–239 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  47. Talenti, G.: Best constants in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

    Google Scholar 

  48. Tao, T.: Concentration compactness and the profile decomposition. Terence Tao Blog: What’s new. http://terrytao.wordpress.com/2008/11/05/concentration-compactness-and-the-profile-decomposition/, 5 Nov (2008)

  49. Tao, T.: Concentration compactness via nonstandard analysis. Terence Tao Blog: What’s new. http://terrytao.wordpress.com/2010/11/29/concentration-compactness-via-nonstandard-analysis/, 10 Nov (2010)

  50. Taylor, M.: Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407–1456 (1992)

    Article  MATH  Google Scholar 

  51. Taylor, M.: Commutator estimates. Proc. Am. Math. Soc. 131, 1501–1507 (2003)

    Article  MATH  Google Scholar 

  52. Tintarev, K., Fieseler, K.-H.: Concentration Compactness. Functional-Analytic Grounds and Applications. Imperial College Press, London (2007)

Download references

Acknowledgments

We are indebted with Luis Vega for useful discussions about Sobolev inequalities and weighted estimates for the Riesz potentials, and for having drawn our attention on [26]. We would like to thank Piero D’Ancona for having pointed out to us the paper [42].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Pisante.

Additional information

Communicated by O.Savin.

G. Palatucci has been supported by the ERC grant 207573 “Vectorial Problems”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palatucci, G., Pisante, A. Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. 50, 799–829 (2014). https://doi.org/10.1007/s00526-013-0656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0656-y

Mathematics Subject Classification (2000)

Navigation