Skip to main content
Log in

The Largest Plastid Genome of Monocots: a Novel Genome Type Containing AT Residue Repeats in the Slipper Orchid Cypripedium japonicum

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Plastid genome studies on Orchidaceae, one of the largest families of flowering plants, have been limited to the subfamily Epidendroideae. To increase understanding of the plastid genome evolution in Orchidaceae, we performed a complete plastid genome analysis of the slipper orchid Cypripedium japonicum positioned in the basal clade of the family. No significant gene deletions were observed in the plastid genome of the slipper orchid composed of 85 coding genes including members of the ndh gene family, which are mostly deleted or show pseudogenisation in orchids, although matK was identified as a pseudogene due to a frameshift mutation. Results also revealed that C. japonicum contains the largest plastid genome (174,417 bp) within monocots and the third largest one in Magnoliophyta. This is a new type of plastid genome extended due to abnormally frequent AT residue repeats within noncoding regions without inverted repeat (IR) expansion. In addition, we detected 25 plastid microsatellites and compared them among seven populations from Korea and Japan. These microsatellites may be applicable to population genetics and conservation biology studies on slipper orchids, which have become rare and are nearing extinction. AT-rich regions in the introns may also play a role in effective splicing of the genome after matK lost its function. As AT-rich regions are difficult to amplify and sequence using normal sequencing technologies, we propose a revised methodology for sequencing these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Asakura Y, Barkan A (2006) Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol 142:1656–1663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bain JF, Jansen RK (2006) A chloroplast DNA hairpin structure provides useful phylogenetic data within tribe Senecioneae (Asteraceae). Can J Bot 84:862–868

    Article  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barrett CF, Davis JI (2012) The plastid genome of the mycoheterotrophic Corallorhiza striata (Orchidaceae) is in the relatively early stages of degradation. Am J Bot 99:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  • Cameron KM et al (1999) A phylogenetic analysis of the Orchidaceae: evidence from rbcL nucleotide sequences. Am J Bot 86:208–224

    Article  PubMed  Google Scholar 

  • Catalano SA, Saidman BO, Vilardi JC (2009) Evolution of small inversions in chloroplast genome: a case study from a recurrent inversion in angiosperms. Cladistics 25:93–104

    Article  Google Scholar 

  • Chang CC et al (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    Article  CAS  PubMed  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium × hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  CAS  PubMed  Google Scholar 

  • Chung JM, Park KW, Park CS, Lee SH, Chung MG, Chung MY (2009) Contrasting levels of genetic diversity between the historically rare orchid Cypripedium japonicum and the historically common orchid Cypripedium macranthos in South Korea. Bot J Linn Soc 160:119–129

    Article  Google Scholar 

  • Cox A, Abdelnour G, Bennett M, Leitch I (1998) Genome size and karyotype evolution in the slipper orchids (Cypripedioideae: Orchidaceae). Am J Bot 85:681

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino S, Noce ME, Musacchio A, Widmer A (2003) Variation at a chloroplast minisatellite locus reveals the signature of habitat fragmentation and genetic bottlenecks in the rare orchid Anacamptis palustris (Orchidaceae). Am J Bot 90:1681–1687

    Article  PubMed  Google Scholar 

  • Darzentas N (2010) Circoletto: visualizing sequence similarity with Circos. Bioinformatics 26:2620–2621

    Article  CAS  PubMed  Google Scholar 

  • de Longevialle AF et al (2008) The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana. Plant J 56:157–168

    Article  PubMed  Google Scholar 

  • Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duffy AM, Kelchner SA, Wolf PG (2009) Conservation of selection on matK following an ancient loss of its flanking intron. Gene 438:17–25

    Article  CAS  PubMed  Google Scholar 

  • Fajardo D et al (2013) Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genet Genomes 9:489–498

    Article  Google Scholar 

  • Fay MF et al (2009) Genetic diversity in Cypripedium calceolus (Orchidaceae) with a focus on north-western Europe, as revealed by plastid DNA length polymorphisms. Ann Bot 104:517–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitter JT, Thomas MR, Rose RJ, Steele-Scott N (1996) Heteroplasmy of the chloroplast genome of Medicago sativa L. cv ‘Regen S” confirmed by sequence analysis. Theor Appl Genet 93:685–690

    Article  CAS  PubMed  Google Scholar 

  • Frey JE, Frey B, Forcioli D (2005) Quantitative assessment of heteroplasmy levels in Senecio vulgaris chloroplast DNA. Genetica 123:255–261

    Article  CAS  PubMed  Google Scholar 

  • Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Garcia MA, Nicholson EH, Nickrent DL (2004) Extensive intraindividual variation in plastid rDNA sequences from the holoparasite Cynomorium coccineum (Cynomoriaceae). J Mol Evol 58:322–332

    Article  CAS  PubMed  Google Scholar 

  • Garner TWJ (2002) Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome 45:212–215

    Article  CAS  PubMed  Google Scholar 

  • Goodall GJ, Filipowicz W (1989) The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58:473–483

    Article  CAS  PubMed  Google Scholar 

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28:583–600

    Article  CAS  PubMed  Google Scholar 

  • Guo YY, Luo YB, Liu ZJ, Wang XQ (2012) Evolution and biogeography of the slipper orchids: Eocene vicariance of the conduplicate genera in the Old and New World Tropics. PLoS One 7:e38788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harrison SP, Yu G, Takahara H, Prentice IC (2001) Palaeovegetation. Diversity of temperate plants in east Asia. Nature 413:129–130

    Article  CAS  PubMed  Google Scholar 

  • Hausner G et al (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391

    Article  CAS  PubMed  Google Scholar 

  • Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T (1994) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell Online 6:1455–1465

    Article  CAS  Google Scholar 

  • Hubschmann T, Hess WR, Borner T (1996) Impaired splicing of the rps12 transcript in ribosome-deficient plastids. Plant Mol Biol 30:109–123

    Article  CAS  PubMed  Google Scholar 

  • Jansen RK et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaramillo-Correa JP, Bousquet J (2005) Mitochondrial genome recombination in the zone of contact between two hybridizing conifers. Genetics 171:1951–1962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenkins BD, Kulhanek DJ, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell Online 9:283–296

    Article  CAS  Google Scholar 

  • Jheng CF, Chen TC, Lin JY, Chen TC, Wu WL, Chang CC (2012) The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Sci 190:62–73

    Article  CAS  PubMed  Google Scholar 

  • Johnson LB, Palmer JD (1989) Heteroplasmy of chloroplast DNA in Medicago. Plant Mol Biol 12:3–11

    Article  CAS  PubMed  Google Scholar 

  • Kearse M et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed Central  PubMed  Google Scholar 

  • Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr Genet 30:259–262

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kim JH (2013) Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two lilies (Lilium longiflorum and Alstroemeria aurea). PLoS One 8:e68180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim KJ, Lee HL (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19:104–113

    CAS  PubMed  Google Scholar 

  • Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149–159

    Article  CAS  PubMed  Google Scholar 

  • Kores PJ, Weston PH, Molvray M, Chase MW (2000) Phylogenetic relationships within the Diurideae (Orchidaceae): inferences from plastid matK DNA sequences. Monocots: Syst Evol 449:456

    Google Scholar 

  • Kores PJ, Molvray M, Weston PH, Hopper SD, Brown AP, Cameron KM, Chase MW (2001) A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data. Am J Bot 88:1903–1914

    Article  CAS  PubMed  Google Scholar 

  • Liu H-X, Goodall G, Kole R, Filipowicz W (1995) Effects of secondary structure on pre-mRNA splicing: hairpins sequestering the 5‘but not the 3’splice site inhibit intron processing in Nicotiana plumbaginifolia. EMBO J 14:377

    PubMed Central  CAS  PubMed  Google Scholar 

  • Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303

    Article  PubMed Central  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCauley DE (2013) Paternal leakage, heteroplasmy, and the evolution of plant mitochondrial genomes. New Phytol 200:966–977

    Article  PubMed  Google Scholar 

  • McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW (2007) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57

    Article  PubMed Central  PubMed  Google Scholar 

  • Mes TH, Kuperus P, Kirschner J, Stepanek J, Oosterveld P, Storchova H, den Nijs JC (2000) Hairpins involving both inverted and direct repeats are associated with homoplasious indels in non-coding chloroplast DNA of Taraxacum (Lactuceae: Asteraceae). Genome 43:634–641

    Article  CAS  PubMed  Google Scholar 

  • Okonechnikov K, Golosova O, Fursov M, Team U (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167

    Article  CAS  PubMed  Google Scholar 

  • Pan IC et al (2012) Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla Apply in tropical Oncidium breeding. PLoS One 7:e34738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pearl SA, Welch ME, McCauley DE (2009) Mitochondrial heteroplasmy and paternal leakage in natural populations of Silene vulgaris, a gynodioecious plant. Mol Biol Evol 26:537–545

    Article  CAS  PubMed  Google Scholar 

  • Pemberton RW (2013) Pollination of slipper orchids (Cypripedioideae): a review. Lankesteriana 13:65–73

    Google Scholar 

  • Pinheiro F, Palma-Silva C, de Barros F, Felix LP, Lexer C, Cozzolino S, Fay MF (2009) Chloroplast microsatellite markers for the Neotropical orchid genus Epidendrum, and cross-amplification in other Laeliinae species (Orchidaceae). Conserv Genet Resour 1:505–511

    Article  Google Scholar 

  • Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147

    Article  PubMed  Google Scholar 

  • Qian X, Li Q-J, Liu F, Gong M-J, Wang C-X, Tian M (2014) Conservation genetics of an endangered Lady’s Slipper Orchid: Cypripedium japonicum in China. Int J Mol Sci 15:11578–11596

    Article  PubMed Central  PubMed  Google Scholar 

  • Qiu YX, Sun Y, Zhang XP, Lee J, Fu CX, Comes HP (2009) Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to quaternary climate change and landbridge configurations. New Phytol 183:480–495

    Article  CAS  PubMed  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie RA, Sakai K, Coffroth MA (2002) Evolution of length variation and heteroplasmy in the chloroplast rDNA of symbiotic dinoflagellates (Symbiodinium, Dinophyta) and a novel insertion in the universal core region of the large subunit rDNA. Phycologia 41:311–318

    Article  Google Scholar 

  • Sloan DB, Oxelman B, Rautenberg A, Taylor DR (2009) Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Sileneae. BMC Evol Biol 9:260

    Article  PubMed Central  PubMed  Google Scholar 

  • Sloan DB, Alverson AJ, Wu M, Palmer JD, Taylor DR (2012) Recent acceleration of plastid sequence and structural evolution coincides with extreme mitochondrial divergence in the angiosperm genus Silene. Genome Biol Evol 4:294–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Stern DB, Gruissem W (1987) Control of plastid gene expression: 3’ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157

    Article  CAS  PubMed  Google Scholar 

  • Su XZ, Wu Y, Sifri CD, Wellems TE (1996) Reduced extension temperatures required for PCR amplification of extremely A + T-rich DNA. Nucleic Acids Res 24:1574–1575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swangpol S, Volkaert H, Sotto RC, Seelanan T (2007) Utility of selected non-coding chloroplast DNA sequences for lineage assessment of Musa interspecific hybrids. J Biochem Mol Biol 40:577–587

    Article  CAS  PubMed  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2005) The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol 3:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2006) The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324–1338

    Article  CAS  PubMed  Google Scholar 

  • Vogel J, Borner T, Hess WR (1999) Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res 27:3866–3874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watkins KP, Rojas M, Friso G, van Wijk KJ, Meurer J, Barkan A (2011) APO1 promotes the splicing of chloroplast group II introns and harbors a plant-specific zinc-dependent RNA binding domain. Plant Cell 23:1082–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welch ME, Darnell MZ, McCauley DE (2006) Variable populations within variable populations: quantifying mitochondrial heteroplasmy in natural populations of the gynodioecious plant Silene vulgaris. Genetics 174:829–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weng ML, Blazier JC, Govindu M, Jansen RK (2014) Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol 31:645–659

    Article  CAS  PubMed  Google Scholar 

  • Wicke S et al (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–3725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A 89:10648–10652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu FH et al (2010) Complete chloroplast genome of Oncidium gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68

    Article  PubMed Central  PubMed  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Xie G (1997) On phytogeographical affinities of the forest floras between east China and Japan. Chin Geogr Sci 7:236–242

    Article  Google Scholar 

  • Yang JB, Tang M, Li HT, Zhang ZR, Li DZ (2013) Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol Biol 13:84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yi DK, Kim KJ (2012) Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L. PLoS One 7:e35872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zoschke R, Nakamura M, Liere K, Sugiura M, Borner T, Schmitz-Linneweber C (2010) An organellar maturase associates with multiple group II introns. Proc Natl Acad Sci U S A 107:3245–3250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant Fund (MEST 2012-044048 and MEST 2010-0029131) and the conservation and restoration of rare and endemic plants research programme fund of the Korea National Arboretum of the Korea Forest Service (KNA1-2-10, 10-1). The authors thank Dr. Tomohisa Yugawa (Tsukuba Botanical Garden, National Museum of Nature and Science, Tokyo, Japan), Dr. Yung-I Lee (National Museum of Natural Science, Taiwan), and Dr. Sung Won Son (Korea National Arboretum) for providing the plant materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hwan Kim.

Additional information

Jung Sung Kim and Hyoung Tae Kim contributed equally to this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

An example of heteroplasmy found in the petN-psbM region. Three clones were generated from the same PCR products using the same primer set with the same length. However, 1–2-bp deletions of poly(A) or (T), a 1-bp deletion, a larger deletion of 19 bp, and a tandem repeat were found among the clones. (JPEG 825 kb)

Supplementary Fig. 2

Pseudogenisation of matK in the plastid genome of Korean, Japanese, and Chinese C. japonicum (with asterisk), which was confirmed in this study, caused by a 1-bp deletion of poly(A). (JPEG 1285 kb)

Supplementary Fig. 3

Examples of AT-rich regions in the plastid genome of C. japonicum. (A) AT-rich regions between clpP and psbB. (B) AT-rich regions between petN and psbM. (JPEG 2287 kb)

Supplementary Fig. 4

Comparison of the complete plastid genomes among eight representative orchids. (JPEG 1015 kb)

Supplementary Table 1

Information on the samples used for the microsatellite study (DOCX 17 kb)

Supplementary Table 2

Comparison of SI composition among the orchid plastid genomes (DOCX 23 kb)

Supplementary Table 3

Comparison of the proportion of AT between slipper orchid and 345 angiosperm plastid genomes (XLSX 72 kb)

Supplementary Table 4

Comparison of gene losses in the orchid plastid genomes (XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.S., Kim, H.T. & Kim, JH. The Largest Plastid Genome of Monocots: a Novel Genome Type Containing AT Residue Repeats in the Slipper Orchid Cypripedium japonicum . Plant Mol Biol Rep 33, 1210–1220 (2015). https://doi.org/10.1007/s11105-014-0833-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0833-y

Keywords

Navigation