Skip to main content
Log in

Heteroplasmy as a common state of mitochondrial genetic information in plants and animals

  • Review Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Plant and animal mitochondrial genomes, although quite distinct in size, structure, expression and evolutionary dynamics both may exhibit the state of heteroplasmy—the presence of more than one type of mitochondrial genome in an organism. This review is focused on heteroplasmy in plants, but we also highlight the most striking similarities and differences between plant and animal heteroplasmy. First we summarize the information on heteroplasmy generation and methods of its detection. Then we describe examples of quantitative changes in heteroplasmic populations of mitochondrial DNA (mtDNA) and consequences of such events. We also summarize the current knowledge about transmission and somatic segregation of heteroplasmy in plants and animals. Finally, factors which influence the stoichiometry of heteroplasmic mtDNA variants are discussed. Despite the apparent differences between the plant and animal heteroplasmy, the observed similarities allow one to conclude that this condition must play an important role in the mitochondrial biology of living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA. (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973

    Article  PubMed  CAS  Google Scholar 

  • Aksyonova E, Sinyavskaya M, Danilenko N, Pershina L, Nakamura C, Davydenko O (2005) Heteroplasmy and paternally oriented shift of the organellar DNA composition in barley-wheat hybrids during backcrosses with wheat parents. Genome 48:761–769

    PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Arrieta-Montiel M, Lyznik A, Woloszynska M, Janska H, Tohme J, Mackenzie S (2001) Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851–864

    PubMed  CAS  Google Scholar 

  • Backert S, Nielsen BL, Börner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2:477–483

    Article  Google Scholar 

  • Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:39–50

    Article  PubMed  CAS  Google Scholar 

  • Bartoszewski G, Malepszy S, Havey MJ (2004) Mosaic (MSC) cucumbers regenerated from independent cell cultures possesses different mitochondrial rearrangements. Curr Genet 45:45–53

    Article  PubMed  CAS  Google Scholar 

  • Battersby BJ, Shoubridge EA (2001) Selection of a mtDNA sequence variant in hepatocytes of heteroplasmic mice is not due to differences in respiratory chain function or efficiency of replication. Hum Mol Genet 10:2469–2479

    Article  PubMed  CAS  Google Scholar 

  • Battersby BJ, Loredo-Osti JC, Shoubridge EA (2003) Nuclear genetic control of mitochondrial DNA segregation. Nat Genet 33:183–186

    Article  PubMed  CAS  Google Scholar 

  • Bellaoui M, Martin-Canadell A, Pelletier G, Budar F (1998) Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet 257:177–185

    Article  PubMed  CAS  Google Scholar 

  • Bendall KE, Macaulay VA, Sykes BC (1997) Variable levels of a heteroplasmic point mutation in individual hair roots. Am J Hum Genet 61:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Bensasson D, Zhang D, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    Article  PubMed  Google Scholar 

  • Birky CW Jr (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  PubMed  CAS  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed  CAS  Google Scholar 

  • Brandstatter A, Parson W (2003) Mitochondrial DNA heteroplasmy or artifacts—a matter of the amplification strategy? Int J Legal Med 117:180–184

    Article  PubMed  Google Scholar 

  • Budowle B, Allard MW, Wilson MR (2002) Critique of interpretation of high levels of heteroplasmy in the human mitochondrial DNA hypervariable region I from hair. Forensic Sci Int 126:30–33

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF (2002) Modulating heteroplasmy. Trends Genet 18:173–176

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Samuels DC, Elson J, Turnbull DM (2002) Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 360:1323–1325

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 101:17741–17746

    Article  PubMed  CAS  Google Scholar 

  • Clifton SW, Minx P, Fauron CM, Gibson M, Allen JO, Sun H, Thompson M, Barbazuk WB, Kanuganti S, Tayloe C, Meyer L, Wilson RK, Newton KJ (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol 136:3486–3503

    Article  PubMed  CAS  Google Scholar 

  • Edmondson AC, Song D, Alvarez LA, Wall MK, Almond D, McClellan DA, Maxwell A, Nielsen BL (2005) Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana. Mol Genet Genomics 273:115–122

    Article  PubMed  CAS  Google Scholar 

  • Farge G, Touraille S, Le Goff S, Petit N, Renoux M, Morel F, Alziari S (2002) The nuclear genome is involved in heteroplasmy control in a mitochondrial mutant strain of Drosophila subobscura. Eur J Biochem 269:998–1005

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Diaz A, Oya R, Sanchez A, Luque F (2003) Effect of prolonged vegetative reproduction of olive tree cultivars (Olea europaea L.) in mitochondrial homoplasmy and heteroplasmy. Genome 46:377–381

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Miles D, Newton KJ (1993) Analysis of leaf sectors in the NCS6 mitochondrial mutant of maize. Plant Cell 5:963–971

    Article  PubMed  CAS  Google Scholar 

  • Gualberto JM, Wintz H, Weil JH, Grienenberger JM (1988) The genes coding for subunit 3 of NADH dehydrogenase and for ribosomal protein S12 are present in the wheat and maize mitochondrial genomes and are co-transcribed. Mol Gen Genet 215:118–127

    Article  PubMed  CAS  Google Scholar 

  • Gutierres S, Lelandais C, De Paepe R, Vedel F, Chetrit P (1997) A mitochondrial sub-stoichiometric orf87-nad3-nad1 exonA co-transcription unit present in Solanaceae was amplified in the genus Nicotiana. Curr Genet 31:55–62

    Article  PubMed  CAS  Google Scholar 

  • Harmon FG, Kowalczykowski SC (1998) RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev 12:1134–1144

    Article  PubMed  CAS  Google Scholar 

  • Hartmann C, Recipon H, Jubier MF, Valon C, Delcher-Besin E, Henry Y, De Buyser J, Lejeune B, Rode A (1994) Mitochondrial DNA variability detected in a single wheat regenerant involves a rare recombination event across a short repeat. Curr Genet 25:456–464

    Article  PubMed  CAS  Google Scholar 

  • Hartmann C, Henry Y, Tregear J, Rode A (2000) Nuclear control of mitochondrial genome reorganization characterized using cultured cells of ditelosomic and nullisomic-tetrasomic wheat lines. Curr Genet 38:156–162

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Kitagawa K, Takumi S, Nakamura C (2002) Mitochondrial DNA heteroplasmy in wheat, Aegilops and their nucleus-cytoplasm hybrids. Genetics 160:1619–1630

    PubMed  CAS  Google Scholar 

  • Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79:4686–4690

    Article  PubMed  CAS  Google Scholar 

  • Havey MJ, Park YH, Bartoszewski G (2004) The Psm locus controls paternal sorting of the cucumber mitochondrial genome. J Hered 95:492–497

    Article  PubMed  CAS  Google Scholar 

  • Janska H, Mackenzie SA (1993) Unusual mitochondrial genome organization in cytoplasmic male sterile common bean and the nature of cytoplasmic reversion to fertility. Genetics 135:869–879

    PubMed  CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14:146–151

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16:93–95

    Article  PubMed  CAS  Google Scholar 

  • Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, Karhunen PJ, Jacobs HT (2000) Human mtDNA sublimons resemble rearranged mitochondrial genomes found in pathological states. Hum Mol Genet 22:2821–2835

    Article  Google Scholar 

  • Kanazawa A, Tsutsumi N, Hirai A (1994) Reversible changes in the composition of the population of mtDNAs during dedifferentiation and regeneration in tobacco. Genetics 138:865–870

    PubMed  CAS  Google Scholar 

  • Khrapko K, Coller HA, Andre PC, Li XC, Hanekamp JS, Thilly WG (1997) Mitochondrial mutational spectra in human cells and tissues. Proc Natl Acad Sci USA 94:13798–13803

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Takumi S, Nakamura C (2002) Evidence of paternal transmission of mitochondrial DNA in a nucleus-cytoplasm hybrid of timopheevi wheat. Genes Genet Syst 77:243–250

    Article  PubMed  CAS  Google Scholar 

  • Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–663

    PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Kuzmin EV, Duvick DN, Newton KJ (2005) A mitochondrial mutator system in maize. Plant Physiol 137:779–789

    Article  PubMed  CAS  Google Scholar 

  • Kvist L, Martens J, Nazarenko AA, Orell M (2003) Paternal leakage of mitochondrial DNA in the great tit (Parus major). Mol Biol Evol 20:243–247

    Article  PubMed  CAS  Google Scholar 

  • Ladoukakis ED, Zouros E (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Mol Biol Evol 18:1168–1175

    PubMed  CAS  Google Scholar 

  • Laser B, Mohr S, Odenbach W, Oettler G, Kuck U (1997) Parental and novel copies of the mitochondrial orf25 gene in the hybrid crop-plant triticale: predominant transcriptional expression of the maternal gene copy. Curr Genet 32:337–347

    Article  PubMed  CAS  Google Scholar 

  • Lightowlers RN, Chinnery PF, Turnbull DM, Howell N (1997) Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 13:450–455

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater JM, Gil P, Capel J, Somerville CR (1992) Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell 4:889–899

    Article  PubMed  CAS  Google Scholar 

  • Moraes CT, Atencio DP, Oca-Cossio J, Diaz F (2003) Techniques and pitfalls in the detection of pathogenic mitochondrial DNA mutations. J Mol Diagn 5:197–208

    PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11:565–570

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci U S A 97:6960–6966

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD, Trush MA, Kinzler KW, Vogelstein B (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291–293

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto W, Kondo H, Murata M, Motoyoshi F (1996) Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell 8:1377–1390

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Vissing J (2002) Paternal inheritance of mitochondria DNA. N Engl J Med 347:576–580

    Article  PubMed  Google Scholar 

  • Sekiguchi K, Kasai K, Levin BC (2003) Inter- and intragenerational transmission of a human mitochondrial DNA heteroplasmy among 13 maternally-related individuals and differences between and within tissues in two family members. Mitochondrion 2:401–414

    Article  PubMed  CAS  Google Scholar 

  • Shirzadegan M, Palmer JD, Christey M, Earle ED (1991) Patterns of mitochondrial DNA instability in Brassica campestris cultured cells. Plant Mol Biol 16:21–37

    Article  PubMed  CAS  Google Scholar 

  • Shitara H, Hayashi JI, Takahama S, Kaneda H, Yonekawa H (1998) Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148:851–857

    PubMed  CAS  Google Scholar 

  • Skibinski DOF, Gallagher C, Beynon CM (1994) Sex-limited mitochondrial DNA transmission in the marine mussel Mytilus edulis. Genetics 138:801–809

    PubMed  CAS  Google Scholar 

  • Small ID, Isaac PG, Leaver CJ (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6:865–869

    PubMed  CAS  Google Scholar 

  • Steffen SE, Bryant FR (2001) Purification and characterization of the single-stranded DNA binding protein from Streptococcus pneumoniae. Arch Biochem Biophys 388:165–170

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Kawano S, Sakai A, Hirai A, Kuroiwa T (1996) Variability of mitochondrial subgenomic molecules in the meristematic cells of higher plants. Genes Genet Syst 71:329–333

    Article  PubMed  CAS  Google Scholar 

  • Szibor M, Holtz J (2003) Mitochondrial ageing. Basic Res Cardiol 98:210–218

    PubMed  CAS  Google Scholar 

  • Taylor DR, Olson MS, McCauley DE (2001) A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics 158:833–841

    PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Vitart V, De Paepe R, Mathieu C, Chetrit P, Vedel F (1992) Amplification of substoichiometric recombinant mitochondrial DNA sequences in a nuclear, male sterile mutant regenerated from protoplast culture in Nicotiana sylvestris. Mol Gen Genet 233:193–200

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 91:8739–8746

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD (1997) Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci USA 94:14900–14905

    Article  PubMed  CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (cucurbitaceae). Cell 25:793–803

    Article  PubMed  CAS  Google Scholar 

  • White HE, Durston VJ, Seller A, Fratter C, Harvey JF, Cross NC (2005) Accurate detection and quantitation of heteroplasmic mitochondrial point mutations by pyrosequencing. Genet Test 9:190–199

    Article  PubMed  CAS  Google Scholar 

  • Wintz H (1994) Analysis of heteroplasmy in cytoplasmic mutant of maize. Plant Physiol Biochem 32:649–653

    CAS  Google Scholar 

  • Woloszynska M, Kieleczawa J, Ornatowska M, Wozniak M, Janska H (2001) The origin and maintenance of the small repeat in the bean mitochondrial genome. Mol Genet Genomics 265:865–872

    Article  PubMed  CAS  Google Scholar 

  • Wong LJ, Boles RG (2005) Mitochondrial DNA analysis in clinical laboratory diagnostics. Clin Chim Acta 354:1–20

    Article  PubMed  CAS  Google Scholar 

  • Yamato KT, Newton KJ (1999) Heteroplasmy and homoplasmy for maize mitochondrial mutants: a rare homoplasmic nad4 deletion mutant plant. J Hered 90:369–373

    Article  Google Scholar 

  • Zeviani M, Antozzi C (1997) Mitochondrial disorders. Mol Hum Reprod 3:133–148

    Article  PubMed  CAS  Google Scholar 

  • Zouros E, Oberhauser Ball A, Saavedra C, Freeman KR (1994) An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proc Natl Acad Sci USA 91:7463–7467

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Committee for Scientific Research (Grant No. 3 P06A 007 25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Janska.

Additional information

Communicated by R. Bock

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kmiec, B., Woloszynska, M. & Janska, H. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50, 149–159 (2006). https://doi.org/10.1007/s00294-006-0082-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-006-0082-1

Keywords

Navigation