Skip to main content
Log in

Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The complete plastid genome sequence of the American cranberry (Vaccinium macrocarpon Ait.) was reconstructed using next-generation sequencing data by in silico procedures. We used Roche 454 shotgun sequence data to isolate cranberry plastid-specific sequences of “HyRed” via homology comparisons with complete sequences from several species available at the National Center for Biotechnology Information database. Eleven cranberry plastid contigs were selected for the construction of the plastid genome-based homologies and on raw reads flowing through contigs and connection information. We assembled and annotated a cranberry plastid genome (82,284 reads; 185x coverage) with a length of 176 kb and the typical structure found in plants, but with several structural rearrangements in the large single-copy region when compared to other plastid asterid genomes. To evaluate the reliability of the sequence data, phylogenetic analysis of 30 species outside the order Ericales (with 54 genes) showed Vaccinium inside the clade Asteridae, as reported in other studies using single genes. The cranberry plastid genome sequence will allow the accumulation of critical data useful for breeding and a suite of other genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anderberg AA, Rydin C, Källerjö M (2002) Phylogenetic relationships in the order Ericales s.l.: analyses of molecular data from five genes from the plastid and mitochondrial genomes. American J Bot 89:677–687

    Article  CAS  Google Scholar 

  • Bruederle LP, Vorsa N (1994) Genetic differentiation of diploid blueberry, Vaccinium sect. Cyanococcus (Ericaceae). Syst Botany 19:337–349

    Article  Google Scholar 

  • Clarke JL, Daniell H (2011) Plastid biotechnology for crop production: present status and future perspectives. Plant Mol Biol 76:211–220

    Article  PubMed  CAS  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss, and rearrangement. PLoS One 5(6):e11147

    Article  PubMed  Google Scholar 

  • Eck P (1990) The American cranberry. Rutgers University Press, New Brunswick

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband BC, Percy DM, Hajibabaei M, Barrett SCH (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3:e2802

    Article  PubMed  Google Scholar 

  • Galmes J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579

    Article  CAS  Google Scholar 

  • Hikosaka K, Shigeno A (2009) The role of Rubisco and cell walls for the interspecific variation in photosynthetic capacity. Oecologia 160:443–451

    Article  PubMed  Google Scholar 

  • Iorizzo M, Senalik D, Szklarczyk M, Grzebelus D, Spooner S, Simon P (2012) De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biol 12:61

    Article  PubMed  Google Scholar 

  • Jansen RK, Saski C, Lee S, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28:835–847

    Article  PubMed  CAS  Google Scholar 

  • Kalt W (2002) Health functional phytochemicals of fruits. Hortic Rev 27:269–315

    Google Scholar 

  • Kron KA, Chase MW (1993) Systematics of the Ericaceae, Empetraceae, Epacridaceae and related taxa based upon rbcL sequence data. Ann Mo Bot Gard 80:735–741

    Article  Google Scholar 

  • Kron KA, Judd WS (1997) Systematics of the Lyonia group (Andromedeae, Ericaceae) and the use of species as terminals in higher-level cladistic analyses. Syst Bot 22:479–492

    Article  Google Scholar 

  • Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg AA, Gadek PA, Quinn CJ, Luteyn JL (2002) Phylogenic classification of Ericaceae: molecular and morphological evidence. Bot Rev 68:335–423

    Article  Google Scholar 

  • Kumudini S (2004) Effects of radiation and temperature on cranberry photosynthesis and characterization of diurnal variation in photosynthesis. J Amer Soc Hort Sci 129:106–111

    Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5:R12

    Article  PubMed  Google Scholar 

  • Maliga P, Svab Z (2011) Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. Plant Chromosom Eng: Met Protoc 701:37–50

    Article  CAS  Google Scholar 

  • Martins WS, Lucas DCS, Neves KFS, Bertioli DJ (2009) WebSat—a web software for microsatellite marker development. Bioinformation 3:282–283

    Article  PubMed  Google Scholar 

  • McCown BH, Zeldin EL (2003) ‘HyRed’ and early, high fruit color cranberry hybrid. Hortscience 38:304–305

    Google Scholar 

  • Nock CJ, Waters DL, Edwards MA, Bowen SG, Rice N, Cordeiro GM, Henry RJ (2011) Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9:328–333

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Rivas JDL (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583

    Article  Google Scholar 

  • Schönenberger J, von Balthazar M, Sytsma KJ (2010) Diversity and evolution of floral structure among early diverging lineages in the Ericales. Phil Trans R Soc B 365:437–448

    Article  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny website. Version 9 June 2008. http://www.mobot.org/MOBOT/research/APweb/

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1995) The chloroplast genome. Essays Biochem 30:49–57

    PubMed  CAS  Google Scholar 

  • Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S (2010) The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 17:11–22

    Article  PubMed  CAS  Google Scholar 

  • Tesler G (2002) GRIMM: genome rearrangements web server. Bioinformatics 18:492–493

    Article  PubMed  CAS  Google Scholar 

  • USDA-NASS (2011) Crop values 2011 summary. http://www.nass.usda.gov USDA-NASS, Washington, DC

  • Vander Kloet SP (1988) The genus Vaccinium in North America. Agr Canada Publ 1828:201

    Google Scholar 

  • Wang W, Messing J (2011) High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS One 6:e24670

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Stretch AW (2001) Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J Agr Food Chem 49:969–974

    Article  CAS  Google Scholar 

  • Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM (2011) Comparative chloroplast genomes of Pinaceae: insights into the mechanism of diversified genomic organizations. Genome Biol Evol 3:309–319

    Article  PubMed  CAS  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  PubMed  CAS  Google Scholar 

  • Zalapa JE, Cuevas H, Steffan S, Zhu H, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next generation sequencing approaches for the isolation of simple sequence repeats (SSR) in the plant sciences. Am J Bot 99:193–208

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW, Zalapa JE (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 124:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank PS100, Emily Gustin, P. Simon, and M. Iorizzo for their help with different aspects of this work. Eric Zeldin and Brent McCown provided the “HyRed” DNA. This research was supported by funds from the National Foundation Science (DBI-1228280), Wisconsin Cranberry Growers Association, and USDA-ARS (project no. 3655-21220-001-00), provided to J.E.Z., S.A.S., and R.H.

Data archiving statement

The accession number JQ_757046 was assigned to the complete cranberry plastid genome sequence after being submitted to NCBI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Zalapa.

Additional information

Communicated by W. Guo

Data archiving statement

The accession number JQ_757046 was assigned to the complete cranberry plastid genome sequence after being submitted to NCBI.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 99kb)

ESM 2

(DOCX 192kb)

ESM 3

(DOCX 1068kb)

ESM 4

(DOCX 17kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fajardo, D., Senalik, D., Ames, M. et al. Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genetics & Genomes 9, 489–498 (2013). https://doi.org/10.1007/s11295-012-0573-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0573-9

Keywords

Navigation