Skip to main content
Log in

Examining the soil bacterial community under the combined influence of water-absorbing polymer and plant subjected to drought stress

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The use of water-absorbing polymers (WAP) in soils for mitigating water stress is well known. However, the influence of WAP on the soil microbiota and hence, plant growth in soils. The objective of this study is to quantify the combined influence of water absorbing polymer (WAP) amendment and vegetation on the bacterial community of an agricultural soil when subjected to drought conditions.

Methods

In this study, two WAPs along with the plant species Phaseolus vulgaris L. (common bean) were considered to study its impact on the soil bacterial community under controlled environment conditions (greenhouse). The soil bacterial community was assessed using 16 S rRNA gene sequencing at three stages of bean growth. Additionally, energy-dispersive X-ray (EDX) analysis was performed to identify soil constituents and their correlation with bacterial changes.

Results

Results demonstrated significant alterations in bacterial community composition and diversity with WAP application. Notably, the combined effects of WAP and plant species under drought resulted in a synergistic interaction between plant development and treatment. Enrichment of Proteobacteria, Gemmntinonadetes, Verrucomicrobia, and Bacteroidetes was observed, while Actinobacteria, Chloroflexi, and Planctomycetes showed a decreasing trend. Furthermore, WAP amendment in the presence of plants led to increased nitrogen (5.8%), phosphorus (1.9%), and potassium (7.35) (NPK) concentrations in the soil.

Conclusions

These findings highlight the significant positive impact of WAP as a soil amendment on the bacterial community and improved nutrient availability (carbon cycle, nitrogen cycling and fixation, phosphorus availability) in the soil matrix, thereby promoting sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, angronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1–10

    Article  Google Scholar 

  • Altshuler I, Hamel J, Turney S, Magnuson E, Lévesque R, Greer CW, Whyte LG (2019) Species interactions and distinct bacterial communities in high Arctic permafrost affected cryosols are associated with the CH4 and CO2 gas fluxes. Environ Microbiol 21(10):3711–3727

    Article  CAS  PubMed  Google Scholar 

  • Antunes TC, Marconatto L, Borges LGDA, Giongo A, Sand STVD (2021) Analysis of microbial community biodiversity in activated sludge from a petrochemical plant. Revista Ambiente Água 16:e2655

  • Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7(11):2229–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastida F, Torres IF, Hernández T, García C (2017) The impacts of organic amendments: do they confer stability against drought on the soil bacterial community? Soil Biol Biochem 113:173–183

    Article  CAS  Google Scholar 

  • Batool A, Taj S, Rashid A, Khalid A, Qadeer S, Saleem AR, Ghufran MA (2015) Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Front Plant Sci 6:733

    Article  PubMed  PubMed Central  Google Scholar 

  • Bechtold EK, Ryan S, Moughan SE, Ranjan R, Nüsslein K (2021) Phyllosphere community assembly and response to drought stress on common tropical and temperate forage grasses. Appl Environ Microbiol 87(17):e00895–e00821

  • Behera S, Mahanwar PA (2020) Superabsorbent polymers in agriculture and other applications: a review. Polymer-Plastics Technol Mater 59(4):341–356

    Article  CAS  Google Scholar 

  • Bennett AC, Murugapiran SK, Hamilton TL (2020) Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline Hot Springs in Yellowstone National Park. Environ Microbiol Rep 12(5):503–513

    Article  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Biswas, T., & Kole, S. C. (2017) Soil organic matter and microbial role in plant productivity and soil fertility. Advances in Soil Microbiology: Recent Trends and Future Prospects: Volume 2: Soil-Microbe-Plant Interaction, 219-238.

  • Bogati K, Walczak M (2022) The impact of drought stress on soil bacterial community, enzyme activities and plants. Agronomy 12(1):189

    Article  CAS  Google Scholar 

  • Bonetti G, Trevathan-Tackett SM, Carnell PE, Treby S, Macreadie PI (2021) Local vegetation and hydroperiod influence spatial and temporal patterns of carbon and microbe response to wetland rehabilitation. Appl Soil Ecol 163:103917

    Article  Google Scholar 

  • Boukhatem ZF, Merabet C, Tsaki H (2022) Plant growth promoting actinobacteria, the most promising candidates as bioinoculants?. Front Agronomy 4:849911

  • Breuer L, Eckhardt K, Frede HG (2003) Plant parameter values for models in temperate climates. Ecol Model 169(2–3):237–293

    Article  Google Scholar 

  • Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14(11):488–496

    Article  CAS  PubMed  Google Scholar 

  • Burns KN, Kluepfel DA, Strauss SL, Bokulich NA, Cantu D, Steenwerth KL (2015) Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol Biochem 91:232–247

    Article  CAS  Google Scholar 

  • Burton P, Lyons K, Richards C, Amati M, Rose N, Desfours L, Barclay R (2013) Urban food security, urban resilience and climate change. National Climate Change Adaptation Research Facility

  • Chapman SK, Langley JA, Hart SC, Koch GW (2006) Plants actively control nitrogen cycling: uncorking the bacterial bottleneck. New Phytol 169(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary S, Sindhu SS, Dhanker R, Kumari A (2023) Microbes-mediated sulphur cycling in soil. Impact on soil fertility

  • Chomel M, Guittonny-Larchevêque M, Fernandez C, Gallet C, DesRochers A, Paré D, Baldy V (2016) Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. J Ecol 104(6):1527–1541

    Article  Google Scholar 

  • Cretoiu MS, Kielak AM, Schluter A, van Elsas JD (2014) Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing. Soil Biol Biochem 76:5–11

    Article  CAS  Google Scholar 

  • Dai L, Zhang G, Yu Z, Ding H, Xu Y, Zhang Z (2019) Effect of drought stress and developmental stages on bacterial community structure and diversity in peanut rhizosphere soil. Int J Mol Sci 20(9):2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai W, Liu M, Wang N, Ye X, Liu Y, Yao D, Wang H (2023) Positive contribution of predatory bacterial community to multiple nutrient cycling and bacterial network complexity in arsenic-contaminated soils. Appl Soil Ecol 185:104792

    Article  Google Scholar 

  • Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28:2405–2429

    Article  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil-and plant‐associated bacterial communities. J Environ Qual 33(3):806–815

    Article  CAS  PubMed  Google Scholar 

  • El-Asmar J, Jaafar H, Bashour I, Farran MT, Saoud IP (2017) Hydrogel banding improves plant growth, survival, and water use efficiency in two calcareous soils. CLEAN–Soil Air Water 45(7):1700251

    Article  Google Scholar 

  • Elshafie HS, Camele I, Mohamed AA (2023) A Comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int J Mol Sci 24(4):3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estaki M, Jiang L, Bokulich NA, McDonald D, González A, Kosciolek T, ..., Knight R (2020) QIIME 2 enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Curr Protoc Bioinform 70(1):e100

  • Fierer N, Schimel JP, Holden PA (2003) Influence of drying-rewetting frequency on soil bacterial community structure. Bacterial Ecol 45:63–71

    CAS  Google Scholar 

  • Garg A, Wani I, Zhu H, Kushvaha V (2022) Exploring efficiency of biochar in enhancing water retention in soils with varying grain size distributions using ANN technique. Acta Geotechnica 17(4):1315–1326

    Article  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilisation by soil microorganisms–a review. Soil Biol Biochem 42(12):2058–2067

  • Honeck E, Sanguet A, Schlaepfer MA, Wyler N, Lehmann A (2020) Methods for identifying green infrastructure. SN Appl Sci 2:1–25

    Article  Google Scholar 

  • Huang L, Hu W, Tao J, Liu Y, Kong Z, Wu L (2019) Soil bacterial community structure and extracellular enzyme activities under different land use types in a long-term reclaimed wetland. J Soils Sediments 19:2543–2557

    Article  CAS  Google Scholar 

  • Huber KJ, Vieira S, Sikorski J, Wüst PK, Fösel BU, Gröngröft A, Overmann J (2022) Differential response of Acidobacteria to water content, soil type, and land use during an extended drought in African savannah soils. Front Microbiol 13:750456

  • Hueso S, García C, Hernández T (2012) Severe drought conditions modify the bacterial community structure, size and activity in amended and unamended soils. Soil Biol Biochem 50:167–173

    Article  CAS  Google Scholar 

  • Hugenholtz P, Chuvochina M, Oren A (2021) Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J 15:1879–1892

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibarra JG, Colombo RP, Godeas AM, López NI (2020) Analysis of soil bacterial communities associated with genetically modified drought-tolerant corn. Appl Soil Ecol 146:103375

    Article  Google Scholar 

  • Jang SW, Yoou MH, Hong WJ, Kim YJ, Lee EJ, Jung KH (2020) Re-analysis of 16S amplicon sequencing data reveals soil bacterial population shifts in rice fields under drought condition. Rice 13:1–7

    Article  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72(3):1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Wang G, Liu X, Pan X, Herbert SJ (2005) Phosphorus application affects the soybean root response to water deficit at the initial flowering and full pod stages. Soil Sci Plant Nutr 51(7):953–960

    Article  Google Scholar 

  • Kamchoom V, Khattiwong T, Treebupachatsakul T, Keawsawasvong S, Leung AK (2023) Spatiotemporal variations of sand hydraulic conductivity by microbial application methods. J Rock Mech Geotech Eng 16(1):268–278

    Article  Google Scholar 

  • Kargar M, Suresh R, Legrand M, Jutras P, Clark OG, Prasher SO (2017) Reduction in water stress for tree saplings using hydrogels in soil. J Geosci Environ Prot 5(01):27

    Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1492):685–701

    Article  CAS  Google Scholar 

  • Klein M, Poverenov E (2020) Natural biopolymer-based hydrogels for use in food and agriculture. J Sci Food Agric 100(6):2337–2347

    Article  CAS  PubMed  Google Scholar 

  • Li X, He JZ, Hughes JM, Liu YR, Zheng YM (2014) Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl Soil Ecol 73:58–63

    Article  Google Scholar 

  • Lian T, Mu Y, Jin J, Ma Q, Cheng Y, Cai Z, Nian H (2019) Impact of intercropping on the coupling between soil bacterial community structure, activity, and nutrient-use efficiencies. PeerJ 7:e6412

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang D, Du C, Ma F, Shen Y, Wu K, Zhou J (2018) Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS. Polymer 10(12):1296

    Article  Google Scholar 

  • Liu Q, Zhao X, Liu Y, Xie S, Xing Y, Dao J, Wang Z (2021) Response of sugarcane rhizosphere bacterial community to drought stress. Front Microbiol 12:716196

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu TY, Chen CH, Yang YL, Tsai IJ, Ho YN, Chung CL (2022) The brown root rot fungus Phellinus Noxius affects bacterial communities in different root-associated niches of Ficus trees. Environ Microbiol 24(1):276–297

    Article  CAS  PubMed  Google Scholar 

  • Monohon SJ, Manter DK, Vivanco JM (2021) Conditioned soils reveal plant-selected bacterial communities that impact plant drought response. Sci Rep 11(1):21153

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay S, Gupta S, Goswami P (2019) Investigation of the elemental composition of agricultural soil samples from various regions of India. J Environ Manage 246:783–792

    Google Scholar 

  • Narsing Rao MP, Lohmaneeratana K, Bunyoo C, Thamchaipenet A (2022) Actinobacteria–plant interactions in alleviating abiotic stress. Plants 11(21):2976

    Article  PubMed  PubMed Central  Google Scholar 

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira C, Shakiba E, North D, McGraw M, Ballard E, Barrett-D’Amico M, ..., Rahmatallah Y (2022) S rRNA gene-based metagenomic analysis of rhizosphere soil bacteria in arkansas rice crop fields. Agronomy 16(1):222

  • Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN (2021) Chemical fertilisers and their impact on soil health. Microbiota and Biofertilisers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs, pp 1–20

  • Philippot L, Andersson S, Battin T (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    Article  CAS  PubMed  Google Scholar 

  • Pide JLV, Organo ND, Cruz AF, Fernando LM, Villegas LC, Delfin EF, Paterno ES (2023) Effects of nanofertilizer and nano-plant hormone on soil chemical properties and microbial community in two different soil types. Pedosphere 33(5):765–775

    Article  CAS  Google Scholar 

  • Pongsilp N, Nimnoi P (2020) Inoculation of Ensiferfredii strain LP2/20 immobilised in agar results in growth promotion and alteration of bacterial community structure of Chinese kale planted soil. Sci Rep 10(1):1–13

    Article  Google Scholar 

  • Ramirez-Villanueva DA, Bello-López JM, Navarro-Noya YE, Luna-Guido M, Verhulst N, Govaerts B, Dendooven L (2015) Bacterial community structure in maise residue amended soil with contrasting management practices. Appl Soil Ecol 90:49–59

    Article  Google Scholar 

  • Rattan B, Dhobale KV, Saha A, Garg A, Sahoo L, Sreedeep S (2022) Influence of inorganic and organic fertilizers on the performance of water-absorbing polymer amended soils from the perspective of sustainable water use efficiency. Soil Tillage Res 223:105449

    Article  Google Scholar 

  • Rattan B, Saha A, Bordoloi S, Garg A, Sahoo L, Sekharran S (2023a) Efficacy of novel water-absorbing polymer amended soil for improving drought resilience of Solanum lycopersicum. Soil Sci Soc Am J 87(1):13–29

    Article  CAS  Google Scholar 

  • Rattan B, Garg A, Sekharan S, Sahoo L (2023b) Developing an environmental friendly approach for enhancing water retention with the amendment of water-absorbing polymer and fertilizers. Cent Asian J Water Res 9(1)

  • Rattan B, Dwivedi M, Garg A, Sekharan S, Sahoo L (2024) Combined influence of water-absorbing polymer and vegetation on soil water characteristic curve under field condition. Plant and Soil 1–12

  • Ren Q, Yuan J, Wang J, Liu X, Ma S, Zhou L, Zhang J (2022) Water level has higher influence on soil organic carbon and bacterial community in Poyang Lake Wetland than vegetation type. Microorganisms 10(1):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress‐dependent trait. Environ Microbiol 17(2):316–331

    Article  PubMed  Google Scholar 

  • Saha A, Sekharan S (2021) Importance of volumetric shrinkage curve (VSC) for determination of soil–water retention curve (SWRC) for low plastic natural soils. J Hydrol 596:126113

    Article  Google Scholar 

  • Saha A, Rattan B, Sekharan S, Manna U (2020a) Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency. Geoderma 368:114310

    Article  CAS  Google Scholar 

  • Saha A, Sekharan S, Manna U, Sahoo L (2020b) Transformation of non-water sorbing fly ash to a water sorbing material for drought management. Sci Rep 10(1):18664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017) Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8(4):e00764–e00717

  • Silveira R, de Mello TDRB, Silva MRSS, Krüger RH, Bustamante MMDC (2021) Long-term liming promotes drastic changes in the composition of the bacterial community in a tropical savanna soil. Biol Fertil Soils 57(1):31–46

    Article  CAS  Google Scholar 

  • Simonson RW (1962) Soil classification in the United States. Science 137(3535):1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Skrzypczak D, Mikula K, Kossińska N, Widera B, Warchoł J, Moustakas K, ..., Witek-Krowiak A (2020) Biodegradable hydrogel materials for water storage in agriculture-review of recent research. Desalin Water Treat 194:324–332

  • Sofo A, Elshafie HS, Camele I (2020) Structural and functional organization of the root system: a comparative study on five plant species. Plants 9(10):1338

  • Standard, A. S. T. M. 2007. D422–63 (2007) Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken. 10:1520

  • Suganya T, Devi NR, Vignesh S, Rajendran S, Dorothy R, Nguyen TA (2022) Microbiology in agriculture: an introduction. In: Nanosensors for Smart Agriculture. Elsevier, pp 41–51

  • Swift MJ, Andren O, Brussaard L, Briones M, Couteaux MM, Ekschmitt K, Smith P (1998) Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Glob Change Biol 4(7):729–743

    Article  Google Scholar 

  • Tian X, Wang K, Liu Y, Fan H, Wang J, An M (2020) Effects of Polymer materials on soil physicochemical properties and bacterial community structure under drip irrigation. Appl Soil Ecol 150:103456

    Article  Google Scholar 

  • Tian X, Suo W, Wang J, Ren X, Yang J, Hu C (2023) Effects of soil conditioner on soil-crop nitrogen transport and crop nitrogen utilization under different irrigation levels in China. J Soils Sediments 23(11):3806–3819

    Article  CAS  Google Scholar 

  • Treebupachatsakul T, Kamchoom V (2021) Permeability and setting time of bio-mediated soil under various medium concentrations. J Rock Mech Geotech Eng 13(2):401–409

    Article  Google Scholar 

  • Tuesta-Popolizio DA, Velázquez-Fernández JB, Rodriguez-Campos J, Contreras-Ramos SM (2021) Isolation and identification of extremophilic bacteria with potential as plant growth promoters (PGPB) of a geothermal site: a case study. Geomicrobiol J 38(5):436–450

    Article  CAS  Google Scholar 

  • Ullah A, Akbar A, Luo Q, Khan AH, Manghwar H, Shaban M, Yang X (2019) Microbiome diversity in cotton rhizosphere under normal and drought conditions. Bacterial Ecol 77:429–439

    CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2024) Hazardous Waste Management System; Definition of Solid Waste; Toxicity Characteristic; Final Rule. Fed Regist. https://www.govinfo.gov/content/pkg/FR-2002-03-13/html/02-6063.htm

  • Vida C, de Vicente A, Cazorla FM (2020) The role of organic amendments to soil for crop protection: induction of suppression of soilborne pathogens. Ann Appl Biol 176(1):1–15

    Article  Google Scholar 

  • Wasmund K, Mußmann M, Loy A (2017) The life sulfuric: bacterial ecology of sulfur cycling in marine sediments. Environ Microbiol Rep 9(4):323–344

    Article  CAS  PubMed  Google Scholar 

  • Witono JR, Noordergraaf IW, Heeres HJ, Janssen LPBM (2014) Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydr Polym 103:325–332

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (1996) Permissible limits of heavy metals in soil and plants. Geneva, Switzerland

  • Wu Y, Brickler C, Li S, Chen G (2021) Synthesis of microwave-mediated biochar-hydrogel composites for enhanced water absorbency and nitrogen release. Polym Test 93:106996

    Article  CAS  Google Scholar 

  • Xu G, Lv Y, Sun J, Shao H, Wei L (2012) Recent advances in biochar applications in agricultural soils: benefits and environmental implications. CLEAN–Soil Air Water 40(10):1093–1098

    Article  CAS  Google Scholar 

  • Yamasamit N, Sangkeaw P, Jitchaijaroen W, Thongchom C, Keawsawasvong S, Kamchoom V (2023) Effect of Bacillus subtilis on mechanical and self-healing properties in mortar with different crack widths and curing conditions. Sci Rep 13(1):7844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Xu L, Su J, Wang Z, Zhang L (2023) Simultaneous removal of phosphate, calcium, and ammonia nitrogen in a hydrogel immobilised reactor with bentonite/lanthanum/PVA based on bacterial induced calcium precipitation. Chemosphere 326:138460

    Article  CAS  PubMed  Google Scholar 

  • Yurgel SN, Douglas GM, Dusault A, Percival D, Langille MG (2018) Dissecting community structure in wild blueberry root and soil microbiome. Front Microbiol 9:1187

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Guan Y (2022) Bacterial investigations of new hydrogel-biochar composites as soil amendments for simultaneous nitrogen-use improvement and heavy metal immobilisation. J Hazard Mater 424:127154

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, He R, Zhao J, Zhang X, Bildyukevich AV (2023) Effect of aged biochar after bacterial fermentation on antibiotics removal: key roles of microplastics and environmentally persistent free radicals. Bioresour Technol 374:128779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Natural Science Foundation of China (Grant No. 52261160382) for the financial support.

Funding

National Natural Science Foundation of China (Grant No. 52261160382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Garg.

Ethics declarations

Ethics approval

N/A.

Consent to participate

Yes.

Consent for publication

Yes.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Jairo A. Palta.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rattan, B., Banerjee, A., Dhobale, K.V. et al. Examining the soil bacterial community under the combined influence of water-absorbing polymer and plant subjected to drought stress. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06658-y

Keywords

Navigation