Skip to main content

Advertisement

Log in

Physiological and molecular insights into the role of silicon in improving plant performance under abiotic stresses

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Silicon (Si) is well-thought-out as a “multi-talented” quasi-essential facet due to its advantageous appearance in improving plant physiology, mostly under stressful circumstances. This study aimed to explore how Si supplementation improves plant responses to various stressful conditions and impacts the level of compatible solutes.

Methods

Data was gathered from various engines such as Pubmed, Science Direct, Google Scholar, Scopus, etc. Information on the aforementioned topics from 150 references was meticulously organized and included in this study.

Results

This work focuses on the role of Si in improving ROS detoxification potential via stimulating the plant antioxidant defense system. It involves enzymatic and non-enzymatic antioxidants and mitigating stress conditions at the molecular level by inducing the expression of various genes. Crosstalk of Si with plant hormones and other signaling molecules is also being emphasized here, which is beneficial in mediating plant responses to abiotic stresses.

Conclusion

Si significantly alleviates abiotic stresses by maintaining water status, regulating proper nutrient and phytohormones level, osmotic adjustment, diminishing ROS triggered oxidative burst by improving the functioning of antioxidant apparatus and stimulating expression of various stress-related genes. The usage of molecular tools and techniques to decipher the plant gene cascade performing amelioration of drought-induced stress upon silicon application could prove quite beneficial in the arena of agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmo-protectants and antioxidant metabolism. Acta Physiol Plant 37:6

    Article  Google Scholar 

  • Abdelaal KA, Mazrou YS, Hafez YM (2020) Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants 9:733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Khan WU, Shah AA, Yasin NA, Naz S, Ali A, Tahir A, Batool AI (2021) Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere 262:128384

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Asif M, Hassan FU (2014) Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol Plant 36(2):473–483

    Article  CAS  Google Scholar 

  • Ali M, Afzal S, Parveen A, Kamran M, Javed MR, Abbasi GH, Malik Z, Riaz M, Ahmad S, Chattha MS, Ali M (2021) Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol Biochem 158:208–218

    Article  CAS  PubMed  Google Scholar 

  • Anderson K, Broderick JF, Stoddard I (2020) A factor of two: how the mitigation plans of ‘climate progressive’ nations fall far short of Paris-compliant pathways. Clim Policy 20(10):1290–1304

    Article  Google Scholar 

  • Anwaar SA, Ali S, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2015) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res 22:3441–3450

    Article  CAS  Google Scholar 

  • Ashraf M, Afzal M, Ahmad R, Maqsood MA, Shahzad SM, Aziz A, Akhtar N (2010a) Silicon management for mitigating abiotic stress effects in plants. Plant Stress 4(2):104–114

    Google Scholar 

  • Ashraf M, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010b) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326:381–391

    Article  CAS  Google Scholar 

  • Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019) Application of nanosilicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 9(5):246

    Article  CAS  Google Scholar 

  • Bakhat HF, Bibi N, Zia Z, Abbas S, Hammad HM, Fahad S, Ashraf MR, Shah GM, Rabbani F, Saeed S (2018) Silicon mitigates biotic stresses in crop plants: a review. Crop Prot 104:21–34

    Article  CAS  Google Scholar 

  • Bauer P, Elbaum R, Weiss IM (2011) Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746–756

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj S, Kapoor D (2021) Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiol Biochem 166:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK et al (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8(3):71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  CAS  PubMed  Google Scholar 

  • Bosnic P, Pavlicevic M, Nikolic N, Nikolic M (2019) High monosilicic acid supply rapidly increases Na accumulation in maize roots by decreasing external Ca2+ activity. J Plant Nutr Soil Sci 182:210–216

    Article  CAS  Google Scholar 

  • Bukhari MA, Ahmad Z, Ashraf MY, Afzal M, Nawaz F, Nafees M, Jatoi WN, Malghani NA, Shah AN, Manan A (2020) Silicon mitigates drought stress in wheat (Triticum aestivum L.) through improving photosynthetic pigments, biochemical and yield characters. Silicon 13:4757–4772

    Article  Google Scholar 

  • Burnet M, Lafontaine PJ, Hanson AD (1995) Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol 108:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76

    Article  CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    Article  CAS  PubMed  Google Scholar 

  • Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Belanger RR (2018) The controversies of silicon’s role in plant biology. New Phytol 221:67–85

    Article  PubMed  Google Scholar 

  • de Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306

    Article  PubMed  Google Scholar 

  • Deshmukh R, Bélanger RR (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30(8):1277–1285

    Article  Google Scholar 

  • DragišićMaksimović J, Mojović M, Maksimović V, Römheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420

    Article  Google Scholar 

  • Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Wang Q, Yu Y, Huang L, Wu X, Lin W (2011) Silicon and its uptaking gene Lsi1 in regulation of rice UV-B tolerance. Acta Agron Sin 37:1005–1011

    Article  CAS  Google Scholar 

  • Fang C, Zhang P, Jian X, Chen W, Lin H, Li Y, Lin W (2017) Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress. Plant Sci 262:115–126

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Detterbeck A, Clemens S, Dietz KJ (2016) Silicon-induced reversibility of cadmium toxicity in rice. J Exp Bot 67:3573–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farouk S, Omar MM (2020) Sweet basil growth, physiological and ultrastructural modification, and oxidative defense system under water deficit and silicon forms treatment. J Plant Growth Regul 39(3):1307–1331

    Article  CAS  Google Scholar 

  • Farouk S, Elhindi KM, Alotaibi MA (2020) Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol Environ Saf 206:111396

    Article  CAS  PubMed  Google Scholar 

  • Flam-Shepherd R, Huynh WQ, Coskun D, Hamam AM, Britto DT, Kronzucker HJ (2018) Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. J Exp Bot 69:1679–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  CAS  PubMed  Google Scholar 

  • Gal A, Weiner S, Addadi L (2010) The stabilizing effect of silicate on biogenic and synthetic amorphous calcium carbonate. J Am Chem Soc 132:13208–13211

    Article  CAS  PubMed  Google Scholar 

  • Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM, Srivastava PK (2020) Fascinating impact of silicon and silicon transporters in plants: a review. Ecotoxicol Environ Saf 202:110885

    Article  CAS  PubMed  Google Scholar 

  • Gharineh MH, Karmollachaab A (2013) Effect of silicon on physiological characteristics wheat growth under water-deficit stress induced by PEG. Int J Agron Plant Prod 4(7):1543–1548

    CAS  Google Scholar 

  • Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26(5):1055–1063

    Article  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gu H-H, Qiu H, Tian T, Zhan S-S, Chaney RL, Wang S-Z, Tang Y-T, Morel J-L, Qiu R-L (2011) Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Kadioglu YK, Pilbeam DJ, Inal A, Coban S, Aksu A (2008a) Influence of silicon on sunflower cultivars under drought stress, II: essential and nonessential element uptake determined by polarized energy dispersive X-ray fluorescence. Commun Soil sci Plan 39(13–14):1904–1927

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Coban S (2008b) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal39:1885–1903

  • Guo F, Ding C, Zhou Z, Huang G, Wang X (2018) Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice wheat rotation. Ecotoxicol Environ Saf 148:303–310

    Article  CAS  PubMed  Google Scholar 

  • Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Bot 42:1713–1722

    CAS  Google Scholar 

  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K (2012) Abiotic stress and role of salicylic acid in plants. Abiotic stress responses in plants 235–251

  • Hasanuzzaman M, Nahar K, Rohman MM, Anee TI, Huang Y, Fujita M (2018) Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems. GesundePflanzen 70:185–194

    CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHM, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen M, Zulfiqar F, Alam M, Fujita M (2020) Regulation of ROS metabolism in plants under environmental stress: a review of recent experimental evidence. Int J Mol Sci 21:8695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa P, Bressan R, Zhu J, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/annurev.arplant.51.1.463

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant:123459–123466

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Hwang SJ, Hamayun M, Kim HY, Na CI, Kim KU, Shin DH, Lee IJ (2007) Effect of nitrogen and silicon nutrition on bioactive gibberellin and growth of rice under field conditions. J Crop Sci Biotec 10:281–286

    Google Scholar 

  • Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18(146)

  • Jang SW, Kim Y, Khan AL, Na CI, Lee IJ (2018) Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biol 18:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz O, Puppe D, Kaczorek D, Prakash NB, Schaller J (2021) Silicon in the soil–plant continuum: intricate feedback mechanisms within ecosystems. Plants 10(4):652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Greger M (2019) A review on Si uptake and transport system. Plants 8(4):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P (2020) Salicylic acid induced nitric oxide enhances arsenic toxicity tolerance in maize plants by up-regulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 399:123020

    Article  CAS  PubMed  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM cu. Planta 241:847–860

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee IJ, Khan AL (2019) Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep 9:1–16

    Article  Google Scholar 

  • Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR (2014) Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol Plant 58:265–273

    Article  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder CH, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    CAS  PubMed  Google Scholar 

  • Kim YH, Khan AL, Hamayun M, Kang SM, Beom YJ, Lee IJ (2011) Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol Trace Elem Res 144(1):1175–1185

  • Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ (2014a) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol 14:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Jeong HJ, Kim DH, Shin JS, Kim JG, Yeon MH, Lee IJ (2014b) Regulation of jasmonic acid biosynthesis by silicon application during physical injury to Oryza sativa L. J Plant Res 127:525–532

    Article  CAS  PubMed  Google Scholar 

  • Kohli SK, Khanna K, Bhardwaj R, Abd_Allah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants 8:641

  • Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. AgroforSys 80:333–340

    Google Scholar 

  • Liang Y, Si J, Römheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus. New Phytol 167:797–804

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollut 147:422–428

    Article  CAS  Google Scholar 

  • Liang Y, Zhu J, Li Z, Chu G, Ding Y, Zhang J, Sun W (2008) Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot 64:286–294

    Article  CAS  Google Scholar 

  • Liang Y, Nikolic M, Belanger R, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer, Dordrecht

    Book  Google Scholar 

  • Liu JJ, Lin SH, Xu PL, Wang XJ, Bai JG (2009) Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agric Sci China 8(9):1075–1086

    Article  CAS  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated saltinduced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Liu X, Yin L, Deng X, Gong D, Du S, Wang S, Zhang Z (2020) Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. J Hazard Mater 395:122679

    Article  CAS  PubMed  Google Scholar 

  • Lobato AKS, Coimbra GK, Neto MAM, Costa RCL, Santos F, Oliveira N, Luz LM, Barreto AGT, Pereira BWF, Alves GAR, Monteiro BS (2009) Protective action of silicon on water relations and photosynthetic pigments in pepper plants induced to water deficit. Res J Biol Sci 4:617–623

    Google Scholar 

  • Lucas S, Durmaz E, Akpınar BA, Budak H (2011) The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem 49:346–351

  • Lü J, Jiao WB, Qiu HY, Chen B, Huang XX, Kang B (2018) Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You’xi county Southeast China. Geoderma 310:99–106

    Article  Google Scholar 

  • Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y (2002) Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant 115(1):87–92

    Article  CAS  PubMed  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (1993) Interaction between calcium and silicon in water-cultured rice plants. Plant Soil 148:107–113

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Ci K, Zhu J, Sun Z, Liu Z, Li X, Zhu Y, Tang C, Wang P, Liu Z (2021) Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. Sci Total Environ 759:143501

    Article  CAS  PubMed  Google Scholar 

  • Malhotra C, Kapoor RT (2019) Silicon: a sustainable tool in abiotic stress tolerance in plants. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. Springer, Cham, pp 333–356

    Chapter  Google Scholar 

  • Malhotra CH, Kapoor R, Ganjewala D (2016) Alleviation of abiotic and biotic stresses in plants by silicon supplementation. Scientia 13:59–73

    CAS  Google Scholar 

  • Manivannan A, Soundararajan P, Muneer S, Ko CH, Jeong BR (2016) Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. Biomed Res Int 2016:3076357

    Article  PubMed  PubMed Central  Google Scholar 

  • Markovich O, Steiner E, Kouˇril Š, Tarkowski P, Aharoni A, Elbaum R (2017) Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant Cell Environ 40:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Monni S, Uhlig C, Hansen E, Magel E (2001) Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut 112:121–129

    Article  CAS  PubMed  Google Scholar 

  • Moradtalab N, Weinmann M, Walker F, Höglinger B, Ludewig U, Neumann G (2018) Silicon improves chilling tolerance during early growth of maize by effects on micronutrient homeostasis and hormonal balances. Front Plant Sci 9:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Rahman MM, Ansary MMU, Keya SS, Abdelrahman M, Miah MG, Phan Tran LS (2021) Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol 41(6):918–934

    Article  CAS  PubMed  Google Scholar 

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agri Biol 8:293–297

    CAS  Google Scholar 

  • Muneer S, Park YG, Kim S, Jeong BR (2017) Foliar or subirrigation silicon supply mitigates high temperature stress in strawberry by maintaining photosynthetic and stress-responsive proteins. J Plant Growth Regul 36:836–845

    Article  CAS  Google Scholar 

  • Mushtaq A, Khan Z, Khan S, Rizwan S, Jabeen U, Bashir F, Ismail T, Anjum S, Masood A (2020) Effect of silicon on antioxidant enzymes of wheat (Triticum aestivum L.) grown under salt stress. Silicon 12:2783–2788

    Article  CAS  Google Scholar 

  • Othmani A, Ayed S, Bezzin O, Farooq M, Ayed-Slama O, Slim-Amara H, Younes MB (2020) Effect of silicon supply methods on durum wheat (Triticum durum Desf.) response to drought stress. Silicon 13:3047–3057

    Article  Google Scholar 

  • Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25:291–299

    Article  CAS  PubMed  Google Scholar 

  • Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G (2011) OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J 65:194–205

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. CurrOpin Plant Biol 14:290–295

    CAS  Google Scholar 

  • Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Rehman MZ, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431

    Article  CAS  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Jacquot JP (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738–741

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh E, Lakzayi M, Keshtehgar A, Rigi K (2014) The effect of salt stress on respiration, PSII function, chlorophyll, carbohydrate and nitrogen content in crop plants. Intl J Farm & Alli Sci 3(9):988–993

    Google Scholar 

  • Sahebi M, Hanafi MM, Siti NorAkmar A, Rafii MY, Azizi P, Tengoua F, Nurul Mayzaitul Azwa J, Shabanimofrad M (2015a) Importance of silicon and mechanisms of biosilica formation in plants. Biomed Res Int 2015:396010

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahebi, M.; Hanafi, M.M.; Siti NorAkmar, A.; Rafii, M.Y.; Azizi, P.; Tengoua, F.; Nurul MayzaitulAzwa, J.; Shabanimofrad, M. Importance of silicon and mechanisms of biosilica formation in plants. Biomed Res Int 2015b, 2015

  • Savvas D, Gizas G, Karras G, Lydakis-Simantiris N, Salahas G, Papadimitriou M, Tsouka N (2007) Interactions between silicon and NaCl-salinity in a soilless culture of roses in greenhouse. Europ J Hort Sci 72:73–79

    CAS  Google Scholar 

  • Schaller J, Brackhage C, Dudel EG (2012) Silicon availability changes structural carbon ratio and phenol content of grasses. Environ Exp Bot 77:283–287

    Article  CAS  Google Scholar 

  • Schaller J, Frei S, Rohn L, Gilfedder BS (2020a) Amorphous silica controls water storage capacity and phosphorus mobility in soils. Frontiers in Environmental Science 8:94

    Article  Google Scholar 

  • Schaller J, Cramer A, Carminati A, Zarebanadkouki M (2020b) Biogenic amorphous silica as main driver for plant available water in soils. Sci Rep 10(1):1–7

    Article  Google Scholar 

  • Shao J, He Y, Zhang H, Chen A, Lei M, Chen J, Peng L, Gu JD (2016) Silica fertilization and nano-MnO2 amendment on bacterial community composition in high arsenic paddy soils. Appl Microbiol Biotechnol 100:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Landi M (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Xiao X, Dong Z, Chen Y (2014) Silicon effects on anti-oxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiol Plant 36:3063–3069

    Article  CAS  Google Scholar 

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of anti-oxidative enzymes. Plant Growth Regul 61:45–52

    Article  CAS  Google Scholar 

  • Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170:847–853

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Yang S, Han D, Zhou Z, Li X, Liu Y, Zhang B (2018) Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing anti-oxidative capacity. Environ Sci Pollut Res 25:7638–7646

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui H, Yusuf M, Faraz A, Faizan M, Sami F, Hayat S (2018) 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South Afr J Bot 118:120–128

    Article  CAS  Google Scholar 

  • Singh S, Prasad SM, Sharma S, Dubey NK, Ramawat N, Prasad R, Singh VP, Tripathi DK, Chauhan DK (2020) Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. Physiol Plant

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345

    Article  CAS  PubMed  Google Scholar 

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2010) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34(1):71–82

    Article  Google Scholar 

  • Soundararajan P, Sivanesan I, Jana S, Jeong BR (2014) Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Hortic Environ Biotechnol 55:271–279

    Article  CAS  Google Scholar 

  • Soundararajan P, Manivannan A, Cho YS, Jeong BR (2017) Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus L. by stabilizing the physiology and protein expression. Front Plant Sci 8:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284:173–183

    Article  CAS  Google Scholar 

  • Tayyab M, Islam W, Zhang H (2018) Promising role of silicon to enhance drought resistance in wheat. Commun Soil Sci Plant Anal 49:2932–2941

    Article  CAS  Google Scholar 

  • Trenholm LE, Datnoff LE, Nagara RT (2004) Influence of silicon on drought and shade tolerance of St. Augustine grass Hort Technology 14:487–490

    CAS  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Bashri G, Shweta S, Ahmad P, Singh V (2017a) Efficacy of silicon against aluminum toxicity in plants: an overview. In: Silicon in plants: advances and future prospects. CRC Press, Taylor & Francis Group, Boca Raton, pp 355–366

    Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Varma RK, Singh S, Sachan M, Guerriero G, Kushwaha BK, Bhardwaj S, Ramawat N, Sharma S, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Sahi S (2020) Silicon tackles butachlor toxicity in rice seedlings by regulating anatomical characteristics, ascorbate-glutathione cycle, proline metabolism and levels of nutrients. Sci Rep 10:14078

    Article  Google Scholar 

  • Van Bockhaven J, Steppe K, Bauweraerts I, Kikuchi S, Asano T, Höfte M, De Vleesschauwer D (2015) Primary metabolism plays a central role in moulding silicon-inducible brown spot resistance in rice. Mol Plant Pathol 16:811–824

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma KK, Wu KC, Singh P, Malviya MK, Singh RK, Song XP, Li YR (2019) The protective role of silicon in sugarcane under water stress: photosynthesis and antioxidant enzymes. Biomed J Sci Tech Res 15:1–7

    Google Scholar 

  • Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2020) Silicon and plant growth promoting rhizobacteria differentially regulate AgNP-induced toxicity in Brassica juncea: implication of nitric oxide. J Hazard Mater 390:121806. https://doi.org/10.1016/j.jhazmat.2019.121806

  • Vulavala VKR, Elbaum R, Yermiyahu U, Fogelman E, Kumar A, Ginzberg I (2016) Silicon fertilization of potato: expression of putative transporters and tuber skin quality. Planta 243:217–229

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285

    Article  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cai K, Chen Y, Wang G (2013) Silicon-mediated tomato resistance against Ralstonia solanacearum is associated with modification of soil microbial community structure and activity. Biol Trace Elem Res 152:275–283

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu P, Chen D, Yin L, Li H, Deng X (2015a) Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci 6:759

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Liu P, Chen D, Yin L, Li H, Deng X (2015b) Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci 6:759

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Chu C, Wei H, Zhang L, Ahmad Z, Wu S, Xie B (2020) Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ Pollut (Barking, Essex: 1987) 267:115411

    Article  CAS  Google Scholar 

  • Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Liu, MD, Jiang F, Zhang YL (2012) Effect of silicon fertilizer in acid and neutral paddy field soils: I. Effect on dynamic changes of pH, Eh and Si in soil solution. Journal of Agro-Environment Science 31(4):757–763

  • Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, He L, Lin X, Che L, Ye Z, Wang H (2016) Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res 23:974–984

    Article  CAS  Google Scholar 

  • Yao X, Chu J, Cai K, Liu L, Shi J, Geng W (2011) Silicon improves the tolerance of wheat seedlings to ultraviolet-B stress. Biol Trace Elem Res 143:507–517

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S (2016) Silicon mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307

    Article  CAS  Google Scholar 

  • Zhang WJ, Zhang XJ, Lang DY, Li M, Liu H, Zhang XH (2020) Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biol Plant 64:302–313

    Article  CAS  Google Scholar 

  • Zhao D, Hao Z, Tao J, Han C (2013) Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora pall). Sci Hortic 151:165–172

    Article  CAS  Google Scholar 

  • Zhou MX (2009) Barley production and consumption. In: Zhang G, Li C (eds) Genetics and improvement of barley malt quality. Springer, Berlin, pp 1–17

    Google Scholar 

  • Zhu YX, Gong HJ, Yin JL (2019) Role of silicon in mediating salt tolerance in plants: a review. Plants 8:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Jiang X, Zhang J, He Y, Zhu X, Zhou X, Gong H, Yin J, Liu Y (2020) Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol Biochem 156:209–220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhriti Kapoor or Ram Prasad.

Additional information

Responsible Editor: Kadambot Hamsa Mohamed Siddique.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Sharma, D., Singh, S. et al. Physiological and molecular insights into the role of silicon in improving plant performance under abiotic stresses. Plant Soil 486, 25–43 (2023). https://doi.org/10.1007/s11104-022-05395-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05395-4

Keywords

Navigation