Skip to main content

Silicon: A Sustainable Tool in Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Plant Abiotic Stress Tolerance

Abstract

Silicon is known as an anti-stress agent and its protecting role against a wide range of environmental stresses such as drought, frost, salinity, high temperature, and heavy metal toxicity is well recognized. Silicon increases crop productivity and improves crop quality while the lack of this element reduces plant’s biological ability to withstand the adverse environmental conditions. Silicon is non-corrossive, non-pollutive, and not detrimental to plants even when applied in excess. Silicon fertilizer can provide economic as well as ecological benefits to plant growers. Hence, concerted efforts in the area of silicon research can lead to its accelerated and improved application in the form of fertilizer for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37:1–15

    CAS  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    CAS  PubMed  Google Scholar 

  • Agarie S, Uchida H, Agata W, Kubota F, Kaufman PB (1998) Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Prod Sci 1:89–95

    Google Scholar 

  • Ahmed M, Asif M, Hassan FU (2014) Augmenting drought tolerance in sorghum by silicon nutrition. Acta Physiol Plant 36:473–483

    CAS  Google Scholar 

  • Al-Aghabary K, Zhu Z, Shi QH (2004) Influence of silicon supply on chloro- phyll content, chlorophyll II fluorescence and antioxidant enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    CAS  Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2005) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115

    Google Scholar 

  • An Y, Liang Z (2013) Drought tolerance of Periploca sepium during seed germination: antioxidant defense and compatible solutes accumulation. Acta Physiol Plant 35:959–967

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Artyszak A, Gozdowski D, Kucińska K (2014) The effect of foliar fertilization with marine calcite in sugar beet. Plant Soil Environ 60:413–417

    Google Scholar 

  • Ashraf M, Ahmad A, MeNeilly T (2001) Growth and photosynthetic charac-teristics in the pearl millet under water stress and the different potassium supply. Photosynthetica 39:389–394

    CAS  Google Scholar 

  • Ashraf M, Rahmatullah AM, Ahmad R, Mujeeb F, Sarwar A, Ali L (2010) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L). Plant and Soil 326:381–391

    CAS  Google Scholar 

  • Asmar SA, Castro EM, Pasqual M, Pereira FJ, Soares JDR (2013) Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Sci Hortic 161:328–332

    CAS  Google Scholar 

  • Balakhnina T, Borkowska A (2013) Effects of silicon on plant resistanceto environmental stresses: review. Int Agrophys 27:225–232

    CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. Wiley, New York

    Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    CAS  PubMed  Google Scholar 

  • Bityutskii N, Pavlovic J, Yakkonen K, Maksimović V, Nikolic M (2014) Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. Plant Physiol Biochem 74:205–211

    CAS  PubMed  Google Scholar 

  • Bodner G, Nakhforoosh A, Kaul HP (2015) Management of crop water under drought: a review. Agron Sustain Dev 35:401–442

    Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boursiac Y, Prak S, Boudet J, Postaire O, Luu DT, Tournaire-Roux C (2008) The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species-and phosphorylation-dependent internalization of aquaporins. Plant Signal Behav 3:1096–1098

    PubMed  PubMed Central  Google Scholar 

  • Bradbury M, Ahmad R (1990) The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant and Soil 125:71–74

    CAS  Google Scholar 

  • Cakmak I (2001) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant and Soil 247:3–24

    Google Scholar 

  • Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. In: Shan A (ed) Abiotic stress in plants mechanisms and adaptations. InTech, Croatia, pp 143–170

    Google Scholar 

  • Chen J, Caldwell RD, Robinson CA, Steinkamp R (2000) Silicon: the estranged medium element. Bulletin 341, Institute of Food and Agricultural Sciences, University of Florida

    Google Scholar 

  • Chen W, Yao X, Cai K, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67–76

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    CAS  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    CAS  PubMed  Google Scholar 

  • Commuri PD, Jones RJ (2001) High temperatures during endosperm cell division in maize. A genotypic comparison under in vitro and field conditions. Crop Sci 41:1122–1130

    Google Scholar 

  • Cooke J, Leishman MR (2011) Silicon concentration and leaf longevity: is silicon a player in the leaf dry mass spectrum? Funct Ecol 25:1181–1188

    Google Scholar 

  • Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct Ecol 30:1340–1357

    Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072. https://doi.org/10.3389/fpls.2016.01072

    Article  PubMed  PubMed Central  Google Scholar 

  • Crusciol CAC (2009) Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci 49:949–954

    CAS  Google Scholar 

  • da Cunha KPV, do Nascimento CWA (2009). Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water Air and Soil Pollution. 197: 323–330. https://doi.org/10.1007/s11270-008-9814-9

    Google Scholar 

  • Dallagnol LJ, Rodrigues FA, DaMatta FM, Mielli MVB, Pereira SC (2011) Deficiency in silicon uptake affects cytological, physiological and biochemical events in the rice–Bipolaris oryzae interaction. Phytopathology 101:92–104

    PubMed  Google Scholar 

  • Debona D, Rodrigues FA, Datnoff LE (2017) Silicon's role in abiotic and biotic plant stresses. Annu Rev Phytopathol 55:85–107

    CAS  PubMed  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    CAS  PubMed  Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    CAS  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinuar Associates, Sunderland, MA, pp 201–240

    Google Scholar 

  • Eraslan F, Ali I, David J, Gunes A (2008) Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L cv Matador) grown under boron toxicity and salinity. Plant Growth Regul 55:207–219

    CAS  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, Berlin, pp 163–200

    Google Scholar 

  • Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    CAS  PubMed  Google Scholar 

  • Exley C (2015) A possible mechanism of biological silicification in plants. Front Plant Sci 6:853. https://doi.org/10.3389/fpls.2015.00853

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Huang J (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    CAS  Google Scholar 

  • FAO (1998) World Agricultural Center, FAOSTAT agricultural statistic data—base gateway

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Berlin, pp 153–188

    Google Scholar 

  • Farooq MA, Detterbeck A, Clemens S, Dietz K-J (2016) Silicon-induced reversibility of cadmium toxicity in rice. J Exp Bot 67:3573–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng JP, Shi QH, Wang XF (2009) Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agric Sci China 8:40–50

    CAS  Google Scholar 

  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530

    CAS  Google Scholar 

  • Frantz JM, Khandekar S, Leisner S (2011) Silicon differentially influences copper toxicity response in silicon-accumulator and non-accumulator species. J Am Soc Hort Sci 136:329–338

    CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2005) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470

    Google Scholar 

  • Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775

    CAS  PubMed  Google Scholar 

  • Gibson LR, Paulsen GM (1999) Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci 39:1841–1184

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    CAS  PubMed  Google Scholar 

  • Gong H, Chen K (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589–1594

    CAS  Google Scholar 

  • Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CI (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26:1055–1063

    CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    CAS  Google Scholar 

  • Gottardi S, Iacuzzo F, Tomasi N, Cortella G, Manzocco L, Pinton R (2012) Beneficial effects of silicon on hydroponically grown corn salad (Valerianella locusta L.) plants. Plant Physiol Biochem 56:14–23

    CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gunes AA, Bagci IEG, Pilbeam DJ (2007) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil 290:103–114

    CAS  Google Scholar 

  • Gunes A, Kadioglu YK, Pilbeam DJ, Inal A, Coban S, Aksu A (2008a) Influence of silicon on sunflower cultivars under drought stress, II: essential and nonessential element uptake determined by polarized energy dispersive X-ray fluorescence. Commun Soil Sci Plant Anal 39:1904–1927

    CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Coban S (2008b) Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885–1903

    CAS  Google Scholar 

  • Guntzer F, Keller C, Meunier JD (2011) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Google Scholar 

  • Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier JD (2012) Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant and Soil 352:173–184

    CAS  Google Scholar 

  • Guo W, Hou YL, Wang SG, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant and Soil 272:173–181

    CAS  Google Scholar 

  • Hajiboland R, Cherghvareh L, Dashtebani F (2016) Effect of silicon supplementation on wheat plants under salt stress. J Plant Proc Funct 5:1–12

    Google Scholar 

  • Hamayun M, Sohn EY, Khan SA, Shinwari ZK, Khan AL, Lee IJ (2010) Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pak J Bot 42:1713–1722

    CAS  Google Scholar 

  • Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L. plants. J Soil Sci Plant Nutr 56:244–253

    CAS  Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxová M, Sugimoto Y (2003) Silicon induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749

    CAS  PubMed  Google Scholar 

  • Hattori T, Inanaga H, Araki H, An P, Morita S, Luxova M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    CAS  Google Scholar 

  • Hattori T, Sonobe K, Araki H, Inanaga S, An P, Morita S (2008) Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. J Plant Nutr 31:1482–1495

    CAS  Google Scholar 

  • Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil 287:359–374

    CAS  Google Scholar 

  • Hernandez JA, Jim-enez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    CAS  Google Scholar 

  • Hernandez-Apaolaza L (2014) Can silicon partially alleviate micronutrient deficiency in plants? A review. Planta 240:447–458

    CAS  PubMed  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    CAS  Google Scholar 

  • Hull RJ (2004) Scientists start to recognize silicon’s beneficial effects. Turf Grass Trends 8:69–73

    Google Scholar 

  • Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S, Tu S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manage 183:521–529

    CAS  PubMed  Google Scholar 

  • Islam MM, Ahmed M, Mahaldar D (2005) In vitro callus induction andplant regeneration in seed explants of rice (Oryza sativa L.). Res J Agric Biol Sci 1:72–75

    Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Transgenic crop plants. Springer, Berlin, pp 67–132

    Google Scholar 

  • John VS, Cabot C, Poschenrieder C, Barcelo J (2003) Efficient leaf ion partitioning, an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes. J Exp Bot 54:2111–2119

    Google Scholar 

  • Kalra N, Jain MC, Joshi HC, Chaudhary R, Sushilkumar PH, Sharma SK, Kumar V, Kumar R, Harit RC, Khan SA, Hussain MJ (2003) Soil properties and crop productivity as influenced by fly ash incorporation in soil. Environ Monit Assess 87:93–109

    PubMed  Google Scholar 

  • Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469–1480

    CAS  Google Scholar 

  • Kaya C, Tuna AL, Sonmez O, Ince F, Higgs D (2010) Mitigation effects of silicon on maize plants grown at high zinc. J Plant Nutr 32:1788–1798

    Google Scholar 

  • Keles Y, Oncel I, Yenice N (2004) Relationship between boron content and antioxidant compounds in Citrus leaves taken from fields with different water source. Plant and Soil 265:343–353

    Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860

    CAS  PubMed  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum. Commun Soil Sci Plant Anal 31:2763–2774

    CAS  Google Scholar 

  • Kim YH, Khan AL, Shinwari ZK, Kim DH, Waqas M, Kamran M (2012) Silicon treatment to rice (Oryza sativa L. cv. ‘Gopumbyeo’) plants during different growth periods and its effects on growth and grain yield. Pak J Bot 44:891–897

    CAS  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2014) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul 33:137–149

    CAS  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Shahzad R, Lee IJ (2016). Silicon mediated mitigation of wounding stress acts by up-regulating the rice antioxidant system. Cereal Research Communications. 44: 111–121.

    CAS  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510. https://doi.org/10.3389/fpls.2017.00510

    Article  PubMed  PubMed Central  Google Scholar 

  • Kingston G (2008) Silicon fertilisers—requirements and field experiences. In: Silicon in Agriculture 4th International Conference, 31 October, Port Edward, South Africa, p 52

    Google Scholar 

  • Li YC, Alva AK, Summer ME (1989) Response of cotton cultivars to aluminium in solutions with varying silicon concentrations. J Plant Nutr 12:881–892

    CAS  Google Scholar 

  • Li CH, Chu TD, Liu XB, Yang Q (1999) Silicon nutrition effects and its study and application development in China. In: Proceedings of Symposium of Plant Nutrition, Shaanxi Science and Technology Press, China, pp 329–333

    Google Scholar 

  • Li J, Leisner SM, Frantz J (2008) Alleviation of copper toxicity in Arabidopsis thaliana by silicon addition to hydroponic solutions. J Am Soc Hort Sci 133:670–677

    Google Scholar 

  • Li H, Zhu Y, Hu Y, Han W, Gong H (2015) Beneficial effects of silicon in alleviating salinity stress of tomato seedlings grown under sand culture. Acta Physiol Plant 37:1–9

    Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil 29:217–224

    Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    CAS  PubMed  Google Scholar 

  • Liang Y, Si J, Romheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus. New Phytol 167:797–804

    CAS  PubMed  Google Scholar 

  • Liang YC, Hua H, Zhu YG, Zhang J, Cheng C, Romheld V (2006) Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol 172:63–67

    CAS  PubMed  Google Scholar 

  • Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    CAS  PubMed  Google Scholar 

  • Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Effect of silicon on crop growth, yield and quality. In: Liang Y, Nikolic M, Bélanger R, Gong H, Song A (eds) Silicon in agriculture: from theory to practice. Springer, Dordrecht, pp 209–223

    Google Scholar 

  • Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S (2014) Aquaporin mediated increase in root hydraulic conductance is involved in silicon induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot 65:4747–4756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lobato AKS, Coimbra GK, Neto MAM, Costa RCL, Santos Filho BG, Oliveira Neto CF, Luz LM, Barreto AGT, Pereira BWF, Alves GAR, Monteiro BS, Marochio CA (2009) Protective action of silicon on relations and photosynthetic pigments in pepper plants induced to water deficit. Res J Agric Biol Sci 4:617–623

    Google Scholar 

  • Lovering TS, Engel C (1959) Significance of accumulator plants in rock weathering. Bull Geol Soc Am 70:781–800

    CAS  Google Scholar 

  • Lux A, Luxová M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441

    CAS  Google Scholar 

  • Luyckx M, Hausman JF, Lutts S, Guerriero G (2017) Silicon and plants: current knowledge and technological perspectives. Front Plant Sci 8:411. https://doi.org/10.3389/fpls.2017.00411

    Article  PubMed  PubMed Central  Google Scholar 

  • Luz JMQ, Rodrigues CR, Goncalves MV, Coelho L (2008) The effect of silicate on potatoes in Minas Gerais, Brazil. IV Silicon in Agriculture Conference, 31 October, Universidade Federal de Uberlandia, Amazonas 4C 127 Uberlandia, Brazil, p 67

    Google Scholar 

  • Lynch M (2008) Silicates in contemporary Australian farming: a 20 year review. IV Silicon in Agriculture Conference, 31 October, South Africa, North Coast Testing Services, Bellingen NSW 2454, Australia, p 49

    Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Cai H, He C, Zhang W, Wang L (2015) Ahemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206:1063–1074

    CAS  PubMed  Google Scholar 

  • Ma D, Sun D, Wang C, Qin H, Ding H, Li Y (2016) Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul 35:1–10

    CAS  Google Scholar 

  • Markovich O, Steiner E, Kouøil S, Tarkowski P, Aharoni A, Elbaum R (2017) Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant Cell Environ 40:1189–1196

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, p 16

    Google Scholar 

  • Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36:821–840

    Google Scholar 

  • Matichenkov VV, Calvert DV (2002) Silicon as a beneficial element for sugarcane. J Am Soc Sugar Cane Technol 22:21–30

    Google Scholar 

  • Mcginnity P (2015) Silicon and its role in crop production. PhD thesis. http://planttuff.com/wpcontentwpcontent/uploads/2015/12/silicon-agricultureiiterature-rvw-1.pdf

  • McKersie BD, Chen Y, De Beus M, Bowley SR, Bowler C (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L). Plant Physiol 103:1155–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Miao BH, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105:967–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14–26

    CAS  Google Scholar 

  • Mitra GN (2015) Regulation of nutrient uptake by plants. Springer, New Delhi

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Monjardino P, Smith AG, Jones RJ (2005) Heat stress effects on protein ac-cumulation of maize endosperm. Crop Sci 45:1203–1210

    CAS  Google Scholar 

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8:293–297

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Neumann D, Zur Nieden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    CAS  PubMed  Google Scholar 

  • Nwugo CC, Huerta AJ (2011) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res 10:518–528

    CAS  PubMed  Google Scholar 

  • Ohyama N (1985) Amelioration of cold weather damage of rice by silicate fertilizer application. Agric Hortic J 60:1385–1389

    Google Scholar 

  • Okita TH, Volcani BE (1978) Role of silicon in diatom metabolism IX. Differential synthesis of DNA polymerases and DNA-binding proteins during silicate starvation and recovery in Cylindrotheca fusiformis. Biochim Biophys Acta 519:76–86

    CAS  PubMed  Google Scholar 

  • Owino-Gerroh C, Gascho G (2005) Effect of silicon on low pH soil phosphorus sorption and on uptake and growth of maize. Commun Soil Sci Plant Anal 35:2369–2378

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  PubMed  Google Scholar 

  • Pascual MB, Echevarria V, Gonzalo MJ, Hernández-Apaolaza L (2016) Silicon addition to soybean (Glycine max L.) plants alleviates zinc deficiency. Plant Physiol Biochem 108:132–138

    CAS  PubMed  Google Scholar 

  • Pavlovic J, Samardzic J, Maksimovic V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M (2013) Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. New Phytol 198:1096–1107

    CAS  PubMed  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance of water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115

    CAS  Google Scholar 

  • Pich A, Scholz G, Stephan UW (1994) Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant and Soil 165:189–196

    CAS  Google Scholar 

  • Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5:154. https://doi.org/10.3389/fpls.2014.00154

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinet M, Ndayiragije A, Lefèvre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rédei GP (2008) Silicon (Si). In: Encyclopedia of genetics, genomics, proteomics, and informatics. Springer, Berlin, p 1817

    Google Scholar 

  • Reezi S, Babalar M, Kalantari S (2009) Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt stressed cut rose (Rosa xhybrida L.) Hot Lady. Afr J Biotechnol 8:1502–1508

    CAS  Google Scholar 

  • Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JÁ, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010) Identification of atri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51:91–102

    PubMed  Google Scholar 

  • Reynolds OL, Padula MP, Zeng R, Gurr GM (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744. https://doi.org/10.3389/fpls.2016.00744

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Zia-ur-Rehman M, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431

    CAS  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    CAS  PubMed  Google Scholar 

  • Sanglard LMVP, Martins SCV, Detmann KC (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant 152:355–366

    CAS  PubMed  Google Scholar 

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1190

    CAS  Google Scholar 

  • Savić J, Marjanović-Jeromela A (2013) Effect of silicon on sunflower growth and nutrient accumulation under low boron supply. Helia 36:61–68

    Google Scholar 

  • Schaller J, Brackhage C, B€aucker E, Dudel EG (2013) UV-screening of grasses by plant silica layer? J Biosci 38:413–416

    PubMed  Google Scholar 

  • Schmidt RE, Zhang X, Chalmers DR (1999) Response of photosynthesis and superoxide dismutase to silica applied to creeping bent-grass grown under two fertility levels. J Plant Nutr 22:1763–1773

    CAS  Google Scholar 

  • Shen X, ZhouY DL, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    CAS  PubMed  Google Scholar 

  • Shen X, Li Z, Duan L, Eneji AE, Li J (2014) Silicon effects on the partitioning of mineral elements in soybean seedlings under drought and ultraviolet-B radiation. J Plant Nutr 37:828–836

    CAS  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of cd in rice seedlings. Plant and Soil 272:53–60

    CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2010) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34:71–82

    Google Scholar 

  • Soundararajan P, Sivanesan I, Jana S, Jeong BR (2014) Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Hortic Environ Biotechnol 55:271–279

    CAS  Google Scholar 

  • Soundararajan P, Manivannan A, Jeong BR (2016) Regulatory mechanisms by silicon to overcome the salinity-induced imbalance of essential nutrient elements, silicon in plants: advances and future prospects. CRC, Boca Raton, FL, pp 47–66

    Google Scholar 

  • Soundararajan P, Manivannan A, Cho YS, Jeong BR (2017) Exogenous supplementation of silicon improved the recovery of hyperhydric shoots in Dianthus caryophyllus L. by stabilizing the physiology and protein expression. Front Plant Sci 8:738. https://doi.org/10.3389/fpls.2017.00738

    Article  PubMed  PubMed Central  Google Scholar 

  • Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123:240–246

    CAS  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    CAS  Google Scholar 

  • Struyf E, Conley DJ (2008) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7:88–94

    Google Scholar 

  • Sutka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C (2011) Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions. Plant Physiol 155:1264–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    CAS  Google Scholar 

  • Takahashi N, Kurata K (2007) Relationship between transpiration and silica content of the rice panicle under elevated atmospheric carbon dioxide concentration. J Agric Meteorol 63:89–94

    Google Scholar 

  • Tang W, Newton RJ, Li C, Charles TM (2007) Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep 26:115–124

    CAS  PubMed  Google Scholar 

  • Torabi F, Majd A, Enteshari S (2015) The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Sci Plant Nutr 61:788–798

    CAS  Google Scholar 

  • Trenholm LE, Datnoff LE, Nagara RT (2004) Influence of silicon on drought and shade tolerance of St. Augustine grass. Hort Technol 14:487–490

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    CAS  PubMed  Google Scholar 

  • Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10–16

    CAS  Google Scholar 

  • Umar SM (2002) Genotypic differences in yield and quality of groundnut as affected by potassium nutrition under erratic rainfall conditions. J Plant Nutr 25:1549–1562

    CAS  Google Scholar 

  • Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58

    Google Scholar 

  • Van Bockhaven J, De Vleesschauwer D, Höfte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1129

    PubMed  Google Scholar 

  • Veatch-Blohm ME (2007) Principles of plant genetics and breeding. Crop Sci 47:1763

    Google Scholar 

  • Wang YX, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XD, Ou-yang C, Fan ZR, Gao S, Chen F, Tang L (2010) Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. J Anim Plant Sci 6:700–708

    Google Scholar 

  • Wang S, Liu P, Chen D, Yin L, Li H, Deng X (2015) Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Front Plant Sci 6:759. https://doi.org/10.3389/fpls.2015.00759

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S (2017) Role of silicon on plant pathogen interactions. Front Plant Sci 8:701. https://doi.org/10.3389/fpls.2017.00701

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Yu Y, Baerson SR, Song Y, Liang G, Ding C, Niu J, Pan Z, Zeng R (2017) Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown plant hopper Nilaparvata lugens. Front Plant Sci 8:28. https://doi.org/10.3389/fpls.2017.00028

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z (2011) Transcriptome analysis reveals salt-stressregulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:47–55

    CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35:3099–3107

    CAS  Google Scholar 

  • Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X (2016) Silicon mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ 39:245–258

    CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol (Special Issue) 187–206

    Google Scholar 

  • You-Qiang FU, Hong S, Dao-Ming WU, Kun-Zheng CAI (2012) Silicon-mediated amelioration of Fe2+ toxicity in rice (Oryza sativa L.) roots. Pedosphere 22:795–802

    Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    CAS  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    CAS  Google Scholar 

  • Zuccarini P (2008) Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biol Plant 52:157–160

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. Chanderdeep Tandon, Director, Amity Institute of Biotechnology, Amity University, Noida, for his persistent encouragement and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riti Thapar Kapoor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, C., Kapoor, R.T. (2019). Silicon: A Sustainable Tool in Abiotic Stress Tolerance in Plants. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_14

Download citation

Publish with us

Policies and ethics