Skip to main content
Log in

Identification of oxidative stress-responsive C2H2 zinc fingers associated with Al tolerance in near-isogenic wheat lines

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Al tolerance is one of the most important trait for worldwide crop production. Using microarrays, we previously identified a transcription factor belonging to the C2H2 zinc finger protein (ZFP) family associated with Al tolerance in wheat (Houde and Diallo, BMC Genomics 9:400, 2008). The current work aimed to identify specific members of the C2H2 ZFP family that are associated with Al tolerance.

Methods

Wheat ESTs were used to assemble C2H2 ZFP family members that do not contain a classical EAR repressor domain. Specific primers were designed for qRT-PCR expression profiling of wheat root tips exposed to Al and H2O2. Two Al-tolerant and sensitive wheat cultivars including a pair of near-isogenic lines differing in Al tolerance were used.

Results

We reconstituted 16 wheat Q-type C2H2 ZFP. Expression profiling identified two transcripts (TaZFP2 and TaZFP3) that accumulate rapidly upon exposure to Al or in response to H2O2 in two tolerant wheat cultivars, including the tolerant near-isogenic line.

Conclusion

The responsiveness of these transcripts to H2O2 suggests that they may represent the wheat orthologs of ZFP transcription factors ZAT7 and ZAT12 that were shown to improve ROS tolerance in Arabidopsis. Thus, they may play a crucial role in the improvement of oxidative stress tolerance in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN Jr (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8(87):87

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–715

    Google Scholar 

  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132(4):2205–2217

    Article  PubMed  CAS  Google Scholar 

  • Arroyo-Serralta GA, Ku-Gonzalez A, Hernandez-Sotomayor SM, Zuniga Aguilar JJ (2005) Exposure to toxic concentrations of aluminum activates a MAPK-like protein in cell suspension cultures of Coffea arabica. Plant Physiol Biochem 43(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Baier AC, Somers DJ, Gustafson JP (1995) Aluminum tolerance in wheat: correlating hydroponic evaluations with field and soil performances. Plant Breed 114:291–296

    Article  CAS  Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of aluminum tolerance in Atlas-66 wheat. Genome 35:689–693

    Article  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268(1):78–94

    Article  PubMed  CAS  Google Scholar 

  • Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451. doi:10.1016/j.tplants.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  • Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65(7–8):1150–1160

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276(5318):1566–1568

    Article  PubMed  Google Scholar 

  • Delhaize E, Craig S, Beaton CB, Bennet RJ, Jagadish VC, Randall PJ (1993a) Aluminum tolerance in wheat (Triticum aestivum L.) I. Uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    PubMed  CAS  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.) (I. Uptake and distribution of aluminum in root apices). Plant Physiol 103(3):685–693

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci U S A 101(42):15249–15254. doi:10.1073/pnas.0406258101

    Article  PubMed  CAS  Google Scholar 

  • Delisle G, Champoux M, Houde M (2001) Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol 42(3):324–333

    Article  PubMed  CAS  Google Scholar 

  • Fredslund J, Lange M (2007) Primique: automatic design of specific PCR primers for each sequence in a family. BMC Bioinforma 8(369):369

    Article  Google Scholar 

  • Gould CM, Diella F, Via A, Puntervoll P, Gemund C, Chabanis-Davidson S, Michael S, Sayadi A, Bryne JC, Chica C, Seiler M, Davey NE, Haslam N, Weatheritt RJ, Budd A, Hughes T, Pas J, Rychlewski L, Trave G, Aasland R, Helmer-Citterich M, Linding R, Gibson TJ (2010) ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 38(Database issue):D167–D180

    Article  PubMed  CAS  Google Scholar 

  • Gourcilleau D, Lenne C, Armenise C, Moulia B, Julien JL, Bronner G, Leblanc-Fournier N (2011) Phylogenetic study of plant Q-type C2H2 zinc finger proteins and expression analysis of poplar genes in response to osmotic, cold and mechanical stresses. DNA Res 18(2):77–92

    Article  PubMed  CAS  Google Scholar 

  • Guo P, Bai G, Carver B, Li R, Bernardo A, Baum M (2007) Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics 277(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Pineros MA, Cancado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci U S A 103(25):9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Diallo AO (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9:400. doi:10.1186/1471-2164-9-400

    Article  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Wang JF, Wang QH, Zhang HS (2005) Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. DNA Seq 16(2):130–136

    PubMed  CAS  Google Scholar 

  • Huang J, Yang X, Wang MM, Tang HJ, Ding LY, Shen Y, Zhang HS (2007) A novel rice C2H2-type zinc finger protein lacking DLN- box/EAR-motif plays a role in salt tolerance. Biochim Biophys Acta 1769:220–227

    Article  PubMed  CAS  Google Scholar 

  • Johnson JP, Carver BF, Baligar VC (1997) Expression of aluminium tolerance transfered from Atlas66 to hard winter wheat. Crop Sci 37:103–108

    Article  CAS  Google Scholar 

  • Jones DL, Kochian LV (1995) Aluminum inhibition of the inositol 1,4,5-Trisphosphate signal transduction pathway in wheat roots: a role in Aluminum toxicity? Plant Cell 7(11):1913–1922

    PubMed  CAS  Google Scholar 

  • Kam J, Gresshoff PM, Shorter R, Xue GP (2008) The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. Plant Mol Biol 67(3):305–322. doi:10.1007/s11103-008-9319-3

    Article  PubMed  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52(359):1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol 41(9):1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217(4):658–667

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136(2):3114–3123, discussion 3001

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Ma HX, Bai GH, Carver BF, Zhou LL (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Maltais K, Houde M (2002) A new biochemical marker for aluminium tolerance in plants. Physiol Plant 115(1):81–86

    Article  PubMed  CAS  Google Scholar 

  • Mesdag J, Slootmaker LAJ (1969) Classifying wheat varieties for tolerance to high soil acidity. Euphytica 18:36–42

    Google Scholar 

  • Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580(28–29):6537–6542. doi:10.1016/j.febslet.2006.11.002

    Article  PubMed  CAS  Google Scholar 

  • Mujika JI, Ruiperez F, Infante I, Ugalde JM, Exley C, Lopez X (2011) Pro-oxidant activity of aluminum: stabilization of the aluminum superoxide radical ion. J Phys Chem A 115(24):6717–6723

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13(8):1959–1968

    PubMed  CAS  Google Scholar 

  • Osawa H, Matsumoto H (2001) Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol 126(1):411–420

    Article  PubMed  CAS  Google Scholar 

  • Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:W433–W437

    Article  PubMed  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol 112(2):591–597

    PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6(1):65–74

    PubMed  CAS  Google Scholar 

  • Prieve MG, Guttridge KL, Munguia JE, Waterman ML (1996) The nuclear localization signal of lymphoid enhancer factor-1 is recognized by two differentially expressed Srp1-nuclear localization sequence receptor proteins. J Biol Chem 271(13):7654–7658

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16(6):276–277

    Article  PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116(1):409–418

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279(12):11736–11743. doi:10.1074/jbc.M313350200

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Malate efflux from root apices and tolerance to aluminium are highly correlated in wheat. Aust J Plant Physiol 22:531–536

    Article  CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149(1):340–351

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47(10):1343–1354

    Article  PubMed  CAS  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H (2009) STOP1 regulates multiple genes that protect arabidopsis from proton and aluminum toxicities. Plant Physiol 150(1):281–294

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28(6):679–688

    Article  PubMed  CAS  Google Scholar 

  • Schott EJ, Gardner RC (1997) Aluminum-sensitive mutants of Saccharomyces cerevisiae. Mol Gen Genet 254(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H, Huang J, Zhang HS (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61(10):2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Article  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127(4):1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582(7):1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21(10):3339–3349

    Article  PubMed  CAS  Google Scholar 

  • Zhou LL, Byeon IJ, Ma HX (2007) Quantitative trait loci for aluminum resistance in wheat. Mol Breeding 19:153–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr N. Chevrier (UQAM) for bulking up the Atlas66 seed stock, and Dr F. Ouellet and F. Sarhan for critical reading of the manuscript. This work was supported by a Natural Sciences and Engineering Research Council of Canada grant (OGP0138557) to M.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Houde.

Additional information

Responsible Editor: Jian Feng Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 118 kb)

ESM 2

(PDF 554 kb)

ESM 3

(PDF 2551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali-Benali, M.A., Badawi, M., Houde, Y. et al. Identification of oxidative stress-responsive C2H2 zinc fingers associated with Al tolerance in near-isogenic wheat lines. Plant Soil 366, 199–212 (2013). https://doi.org/10.1007/s11104-012-1417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1417-y

Keywords

Navigation