Skip to main content
Log in

Variation in cadmium accumulation and translocation among peanut cultivars as affected by iron deficiency

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

The current study aimed to test the hypothesis that the variations in shoot Cd accumulation among peanut cultivars was ascribed to the difference in capacity of competition with Fe transport, xylem loading and transpiration.

Methods

A hydroponics experiment was conducted to determine the plant biomass, gas exchange, and Cd accumulation in Fe-sufficient or -deficient plants of 12 peanut cultivars, at low Cd level (0.2 μM CdCl2).

Results

Peanut varied among cultivars in morpho-physiological response to Cd stress as well as Cd accumulation, translocation and distribution. Qishan 208 and Xvhua 13 showed a higher capacity for accumulating Cd in their shoots. Fe deficiency increased the concentration and amount of Cd in plant organs, but decreased TF root to shoot and TF root to stem, while TF stem to leaf remained unaffected. Fe deficiency-induced increase rates of Cd concentration and total Cd amount in roots and leaves were negatively correlated with the values in Fe-sufficient plants. Transpiration rate was positively correlated with leaf Cd concentration, TF root to shoot, TF root to stem and TF stem to leaf.

Conclusions

The difference in shoot Cd concentration among peanut cultivars was mainly ascribed to the difference in Fe transport system, xylem loading capacity and transpiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arao T, Ae N, Sugiyama M, Takahashi M (2003) Genotypic differences in cadmium uptake and distribution in soybeans. Plant Soil 251:247–253

    Article  CAS  Google Scholar 

  • Arduini I, Masoni A, Mariotti M, Ercoli L (2004) Low cadmium application increase miscanthus growth and cadmium translocation. Environ Exp Bot 52:89–100

    Article  CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail: a further step in understanding metal hyperaccumulation? New Phytol 155:1–4

    Article  Google Scholar 

  • Bell MJ, McLaughlin MJ, Wright GC, Cruickshank A (1997) Inter- and intra-specific variation in accumulation of cadmium by peanut, soybean, and navybean. Aust J Agr Res 48:1151–1160

    Article  CAS  Google Scholar 

  • Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J Exp Bot 55:2571–2579

    Article  PubMed  CAS  Google Scholar 

  • Chouliaras V, Therios I, Molassiotis A, Patakas A, Diamantidis G (2005) Effect of iron deficiency on gas exchange and catalase and peroxidase activity in citrus. J Plant Nutr 27:2085–2099

    Article  Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Datt B (1999) A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. J Plant Physiol 154:30–36

    Article  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Florijn PJ, Beusichem ML (1993) Uptake and distribution of cadmium in maize inbred lines. Plant Soil 150:25–32

    Article  CAS  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143:286–292

    Article  CAS  Google Scholar 

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83

    Article  PubMed  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Iturbe-Ormaetxe I, Moran JF, Arrese-Igor C, Gogorcena Y, Klucas RV, Becana M (1995) Activated oxygen and antioxidant defences in iron-deficient pea plants. Plant Cell Environ 18:421–429

    Article  CAS  Google Scholar 

  • Koopmans GF, Römkens P, Fokkema MJ, Song J, Luo YM, Japenga J, Zhao FJ (2008) Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils. Environ Pollut 156:905–914

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Zhou Q, An J, Sun Y, Liu R (2010a) Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J Hazard Mater 173:737–743

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Peng K, Wang A, Lian C, Shen Z (2010b) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Guo J, Cui Y, Lü T, Zhang X, Shi G (2011) Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant Soil 344:131–141

    Article  CAS  Google Scholar 

  • Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Tian S, Yang X, Li T, He Z (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MJ, Bell MJ, Wright GC, Cozens GD (2000) Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L.). Plant Soil 222:51–58

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    Article  PubMed  CAS  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios I (2006) Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J Plant Physiol 163:176–185

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Uraguchi S, Ishikawa S, Arao T (2009) Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environ Exp Bot 67:127–132

    Article  CAS  Google Scholar 

  • Pestana M, Correia PJ, David M, Abadía A, Abadía J, de Varennes A (2011) Response of five citrus rootstocks to iron deficiency. J Plant Nutr Soil Sci 174:837–846

    Article  CAS  Google Scholar 

  • Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytorem 12:105–120

    Article  CAS  Google Scholar 

  • Poulos HM, Goodale UM, Berlyn GP (2007) Drought response of two Mexican oak species, Quercus laceyi and Q. sideroxyla (Fagaceae), in relation to elevational position. Am J Bot 94:809–818

    Article  PubMed  CAS  Google Scholar 

  • Redjala T, Sterckeman T, Morel JL (2009) Cadmium uptake by roots: contribution of apoplast and of high-and low-affinity membrane transport systems. Environ Exp Bot 67:235–242

    Article  CAS  Google Scholar 

  • Rodecap KD, Tingey DT, Lee EH (1994) Iron nutrition influence on cadmium accumulation by Arabidopsis thaliana (L.) Heynh. J Environ Qual 23:239–246

    Article  CAS  Google Scholar 

  • Rosso PH, Pushnik JC, Lay M, Ustin SL (2005) Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ Pollut 137:241–252

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed  CAS  Google Scholar 

  • Schneider T, Haag-Kerwer A, Maetz M, Niecke M, Povh B, Rausch T, Schüßler A (1999) Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L. Nucl Instrum Methods Phys Res B 158:329–334

    Article  CAS  Google Scholar 

  • Shi G, Cai Q (2009) Cadmium tolerance and accumulation in eight potential energy crops. Biotechnol Adv 27:555–561

    Article  PubMed  CAS  Google Scholar 

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    Article  CAS  Google Scholar 

  • Shi G, Liu C, Cui M, Ma Y, Cai Q (2011) Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl Biochem Biotechnol. doi:10.1007/s12010-12011-19382- 12010

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354

    Article  Google Scholar 

  • Thorhaug A, Richardson AD, Berlyn GP (2006) Spectral reflectance of Thalassia testudinum (Hydrocharitaceae) seagrass: low salinity effects. Am J Bot 93:110–117

    Article  CAS  Google Scholar 

  • Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of the Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548

    Article  PubMed  CAS  Google Scholar 

  • Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50:2223–2233

    Article  PubMed  CAS  Google Scholar 

  • Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107:16500–16505

    Article  PubMed  CAS  Google Scholar 

  • Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688

    Article  PubMed  CAS  Google Scholar 

  • Van der Vliet L, Peterson C, Hale B (2007) Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J Exp Bot 58:2939–2947

    Article  PubMed  Google Scholar 

  • Yoshihara T, Hodoshima H, Miyano Y, Shoji K, Shimada H, Goto F (2006) Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25:365–373

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Zhang F (2011) Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339:83–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31171464) and the Anhui Provincial Natural Science Foundation (No. 11040606M87) is gratefully acknowledged. We would like to acknowledge the two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Shi.

Additional information

Responsible Editor: Jian Feng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Wang, X., Liu, C. et al. Variation in cadmium accumulation and translocation among peanut cultivars as affected by iron deficiency. Plant Soil 363, 201–213 (2013). https://doi.org/10.1007/s11104-012-1310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1310-8

Keywords

Navigation