Skip to main content
Log in

Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Root-associated bacteria can have beneficial effects on their host plants. Microbial products can promote and stimulate plant growth or lead to bioprotection against pathogens. This study aimed to isolate putatively beneficial bacteria from traditional cereals grown by subsistence farmers in the Kavango of Namibia. Bacteria were isolated from surface-sterilized roots of Pennisetum glaucum, Sorghum bicolor, and Zea mays, and subjected to phenotypic and phylogenetic analyses. A total of 44 root-associated bacterial strains were isolated. From 33 distinct isolates, 22 belonged to Firmicutes and Actinobacteria, while 11 were Proteobacteria. Eleven novel phylotypes were among the isolates. Features known to contribute to plant growth-promotion and biocontrol were tested in vitro and revealed promising candidates with multiple beneficial characteristics. This is the first report on the characterization of native isolates associated with important agriculture crops in the Kavango region of Namibia. Such isolates have the potential for application as inoculants adapted to poor soils and local crops. Desiccation-tolerant or sporulating Gram-positive bacteria are of particular interest for this region, which is characterized by a long dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen JB, Heydorn A, Hentzer M, Eberl L, Geisenberger O, Christensen BB, Molin S, Givskov M (2001) gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585

    Article  PubMed  CAS  Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Garcia-Villaraco A, Gutiérrez Manero FJ (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions. Strategies and techniques to promote plant growth. Wiley-VCH, Weinheim, pp 1–17

    Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Chassy BM (1976) A gentle method for the lysis of oral streptococci. Biochem Biophys Res Commun 68:603–608

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Nowak J, Coenye T, Clement C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626

    Article  PubMed  CAS  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1994) The effect of salinity on N fixation and assimilation in Vicia faba. J Exp Bot 45:1483–1488

    Article  CAS  Google Scholar 

  • Dikin A, Sijam K, Kadir J, Abu Seman I (2007) Mode of action of antimicrobial substances from Burkholderia multivorans and Microbacterium testaceum against Schizophyllum commune Fr. Int J Agric Biol 9:311–314

    Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66

    Article  CAS  Google Scholar 

  • Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259

    Article  PubMed  CAS  Google Scholar 

  • Fuqua C, Winans SC (1996) Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol 178:435–440

    PubMed  CAS  Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  PubMed  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indolacetic acid. Plant Physiol 26:192–195

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Heidelberg, pp 15–31

    Chapter  Google Scholar 

  • Heulin T, Barakat M, Christen R, Lesourd M, Sutra L, De Luca G, Achouak W (2003) Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. Int J Syst Evol Microbiol 53:589–594

    Article  PubMed  CAS  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yield of maize and wheat in Brazil. Plant Soil 331:413–425

    Article  CAS  Google Scholar 

  • Hurek T, Van Montagu M, Kellenberger E, Reinhold-Hurek B (1995) Induction of complex intracytoplasmic membranes related to nitrogen fixation in Azoarcus sp. BH72. Mol Microbiol 18:225–236

    Article  PubMed  CAS  Google Scholar 

  • Hurek T, Handley L, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microb Interact 15:233–242

    Article  CAS  Google Scholar 

  • Ikeda S, Kaneko T, Okubo T, Rallos LE, Eda S, Mitsui H, Sato S, Nakamura Y, Tabata S, Minamisawa K (2009) Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb Ecol 58:703–714

    Article  PubMed  CAS  Google Scholar 

  • Kageyama A, Takahashi Y, Omura S (2007) Humihabitans oryzae gen. nov., sp. nov. Int J Syst Evol Microbiol 57:2163–2166

    Article  PubMed  CAS  Google Scholar 

  • Kalakoutskii LV, Kirillova IP and Krassilnikov NA (1964) A new genus of the Actinomycetales—Intrasporangium gen. nov. J Gen Microbiol 48:79–85

    Google Scholar 

  • Kersters K (1985) Numerical methods in the classification of bacteria by protein electrophoresis. In: Goodfellow M, Jones D, Priest FG (eds) Computer-assisted bacterial systematics. Academic, London, pp 337–368

    Google Scholar 

  • Kiredjian M, Holmes B, Kersters K, Guilvout I, De Ley J (1986) Alcaligenes piechaudii, a new species from human clinical specimens and the environment. Int J Syst Bacteriol 36:286–287

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced planth growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    Article  CAS  Google Scholar 

  • Lacava PT, Li W, Araujo WL, Azevedo JL, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lalande R, Bissonnette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115:7–11

    Article  Google Scholar 

  • Lambert B, Leyns F, Van Rooyen L, Gossele F, Papon Y, Swings J (1987) Rhizobacteria of maize and their antifungal activities. Appl Environ Microbiol 53:1866–1871

    PubMed  CAS  Google Scholar 

  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Merzaeva OV, Shirokikh IG (2010) Production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:51–57

    Article  CAS  Google Scholar 

  • Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20:6115–6116

    Article  PubMed  Google Scholar 

  • Narváez-Reinaldo JJ, Vilchez JI, Oliver-Jacobo A, SantaCruz-Calvo L, Picazo-Espinosa R, Manzanera M (2010) Plant growth promoting rhizobacteria for protection against drought. In: Becana M (ed) Biological nitrogen fixation and plant-associated microorganisms. Graficas ALOS, Salamanca, pp 233–234

    Google Scholar 

  • Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75:6581–6590

    Article  PubMed  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 1948:362–370

  • Polizzi G, Dimartino M, Bella P, Catara V (2008) First report of leaf spot and blight caused by Ralstonia pickettii on bird of paradise tree in Italy. Plant Dis 92:835

    Article  Google Scholar 

  • Pröpper M, Gröngröft A, Falk T, Eschenbach A, Fox T, Gessner U, Hecht J, Hinz MO, Hoettich C, Hurek T, Kangombe FN, Keil M, Kirk M, Clever M, Mills A, Mukuya R, Namwoonde NE, Overmann J, Petersen A, Reinhold-Hurek B, Schneiderat U, Strohbach BJ, Lück-Vogel M, Wisch U (2010) Causes and perspectives of land-cover change through expanding cultivation in Kavango. In: Jürgens N, Schmiedel U, Hoffman T (eds) Biodiversity in Southern Africa 3: implications for landuse and management. Hess, Göttingen, Windhoek, pp 2–31

    Google Scholar 

  • Rasche F, Trondl R, Naglreiter C, Reichenauer TG, Sessitsch A (2006) Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.). Can J Microbiol 52:1036–1045

    Article  PubMed  CAS  Google Scholar 

  • Raupach GS, Kloepper JW (2000) Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis 84:1073–1075

    Article  CAS  Google Scholar 

  • Reinhold B, Hurek T, Niemann E-G, Fendrik I (1986) Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl Environ Microbiol 52:520–526

    PubMed  CAS  Google Scholar 

  • Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin S, Eberl L (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262

    PubMed  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA, Heyndrickx M (2004) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54:885–891

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Shazad SM, Khalid A, Arshad M, Khalid M, Mehboob I (2008) Integrated use of plant growrth promoting bacteria and P-enriched compost for improving growth, yield and nodulation of chickpea. Pak J Bot 40:1735–1741

    Google Scholar 

  • Sheng XF, He LY, Zhou L, Shen YY (2009) Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can J Microbiol 55:529–535

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249

    Article  CAS  Google Scholar 

  • Sturz AV, Matheson BG (1996) Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265–271

    Article  CAS  Google Scholar 

  • Szenthe A, Page WJ (2003) Quorum sensing in Agrobacterium tumefaciens using N-oxo-acyl-homoserine lactone chemical signal. In: O'Donnell MA (ed) Tested studies for laboratory teaching. Association for Biology Laboratory Education, Toronto, pp 145–152

    Google Scholar 

  • Takeda M, Suzuki I, Koizumi J (2004) Balneomonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the alpha-2 subclass of Proteobacteria. Syst Appl Microbiol 27:139–145

    Article  PubMed  CAS  Google Scholar 

  • Weon HY, Yoo SH, Kim SJ, Kim YS, Anandham R, Kwon SW (2010) Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:1938–1943

    Article  PubMed  CAS  Google Scholar 

  • Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    PubMed  CAS  Google Scholar 

  • Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J Bacteriol 180:5398–5405

    PubMed  CAS  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

  • Zul D, Wanner G, Overmann J (2008) Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 58:1245–1251

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants 01LC0021 and 01LL0912G from the Bundesministerium für Bildung und Forschung to B.R.-H. and T.H. in the BIOLOG and TFO (The Future Okavango) framework. We thank Wolfgang Streit and Leo Eberl for the supply of AHL reporter strains, and Richard Hahnke for helping in the phylogenetic tree reconstruction. Materials were collected in Namibia with Research and Collection permit 1138/2007 and export permit 61911 from the Ministry of Environment and Tourism, Windhoek, Namibia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Reinhold-Hurek.

Additional information

Responsible Editor: Euan K. James.

Jann Lasse Grönemeyer and Claudia Sofía Burbano contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Morphological description of bacterial isolates. (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grönemeyer, J.L., Burbano, C.S., Hurek, T. et al. Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 356, 67–82 (2012). https://doi.org/10.1007/s11104-011-0798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0798-7

Keywords

Navigation