Skip to main content

Advertisement

Log in

Molecular response and evolution of plant anion transport systems to abiotic stress

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

We propose that anion channels are essential players for green plants to respond and adapt to the abiotic stresses associated changing climate via reviewing the literature and analyzing the molecular evolution, comparative genetic analysis, and bioinformatics analysis of the key anion channel gene families.

Abstract

Climate change-induced abiotic stresses including heatwave, elevated CO2, drought, and flooding, had a major impact on plant growth in the last few decades. This scenario could lead to the exposure of plants to various stresses. Anion channels are confirmed as the key factors in plant stress responses, which exist in the green lineage plants. Numerous studies on anion channels have shed light on their protein structure, ion selectivity and permeability, gating characteristics, and regulatory mechanisms, but a great quantity of questions remain poorly understand. Here, we review function of plant anion channels in cell signaling to improve plant response to environmental stresses, focusing on climate change related abiotic stresses. We investigate the molecular response and evolution of plant slow anion channel, aluminum-activated malate transporter, chloride channel, voltage-dependent anion channel, and mechanosensitive-like anion channel in green plant. Furthermore, comparative genetic and bioinformatic analysis reveal the conservation of these anion channel gene families. We also discuss the tissue and stress specific expression, molecular regulation, and signaling transduction of those anion channels. We propose that anion channels are essential players for green plants to adapt in a diverse environment, calling for more fundamental and practical studies on those anion channels towards sustainable food production and ecosystem health in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Pantoja 2021 and Medeiros et al. 2018)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arif MA, Alseekh S, Harb J, Fernie A, Frank W (2018) Abscisic acid, cold and salt stimulate conserved metabolic regulation in the moss Physcomitrella patens. Plant Biol 20:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678

    Article  CAS  PubMed  Google Scholar 

  • Balleza D, Gomez-Lagunas F (2009) Conserved motifs in mechanosensitive channels MscL and MscS. Eur Biophys J 38:1013–1027

    Article  PubMed  Google Scholar 

  • Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S et al (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol 62:25–51

    Article  CAS  PubMed  Google Scholar 

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    Article  CAS  PubMed  Google Scholar 

  • Basu D, Haswell ES (2017) Plant mechanosensitive ion channels: an ocean of possibilities. Curr Opin Plant Biol 40:43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair EJ, Bonnot T, Hummel M, Hay E, Marzolino JM, Quijada IA et al (2019) Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci Rep 9:4814

    Article  PubMed  PubMed Central  Google Scholar 

  • Borrego-Benjumea A, Carter A, Tucker JR, Yao Z, Xu W, Badea A (2020) Genome-wide analysis of gene expression provides new insights into waterlogging responses in barley (Hordeum vulgare L.). Plants 9:240

    Article  CAS  PubMed Central  Google Scholar 

  • Brandt B, Brodsky DE, Xue S, Negi J, Iba K, Kangasjarvi J et al (2012) Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc Natl Acad Sci USA 109:10593–10598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Huang Y, Chen F, Zhang X, Sessa E, Zhao C et al (2021) Evolution of rapid blue-light response linked to explosive diversification of ferns in angiosperm forests. New Phytol 230:1201–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chater C, Gray JE (2015) Stomatal closure: the old guard takes up the SLAC. Curr Biol 25:R271-273

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Hu L, Punta M, Bruni R, Hillerich B, Kloss B et al (2010a) Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467:1074–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZH, Hills A, Lim CK, Blatt MR (2010b) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J 61:816–825

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Hills A, Batz U, Amtmann A, Lew VL, Blatt MR (2012) Systems dynamic modeling of the stomatal guard cell predicts emergent behaviors in transport, signaling, and volume control. Plant Physiol 159:1235–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZC, Yokosho K, Kashino M, Zhao FJ, Ma JF (2013) Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus. Plant J 76:10–23

    CAS  PubMed  Google Scholar 

  • Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, Garcia-Mata C et al (2016) Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytol 209:1456–1469

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL et al (2017) Molecular evolution of grass stomata. Trends Plant Sci 22:124–139

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Soltis DE (2020) Evolution of environmental stress responses in plants. Plant Cell Environ 43:2827–2831

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S et al (2021a) Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol 63:53–78

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Jiang W, Tong T, Chen G, Zeng F, Jang S et al (2021b) Molecular interaction and evolution of jasmonate signaling with transport and detoxification of heavy metals and metalloids in plants. Front Plant Sci 12:665842

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Dubois M, Vermeersch M, Inze D, Vanhaeren H (2021c) Distinct cellular strategies determine sensitivity to mild drought of arabidopsis natural accessions. Plant Physiol 186:1171–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Ohyama K, Kim YY, Jin JY, Lee SB, Yamaoka Y et al (2014) The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. Plant Cell 26:310–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubero-Font P, Maierhofer T, Jaslan J, Rosales MA, Espartero J, Diaz-Rueda P et al (2016) Silent S-type anion channel subunit SLAH1 gates SLAH3 open for chloride root-to-shoot translocation. Curr Biol 26:2213–2220

    Article  CAS  PubMed  Google Scholar 

  • Cubero-Font P, De Angeli A (2021) Connecting vacuolar and plasma membrane transport networks. New Phytol 229:755–762

    Article  PubMed  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F et al (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  Google Scholar 

  • De Angeli A, Baetz U, Francisco R, Zhang J, Chaves MM, Regalado A (2013) The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera. Planta 238:283–291

    Article  PubMed  Google Scholar 

  • Deng F, Zeng F, Chen G, Feng X, Riaz A, Wu X et al (2020) Metalloid hazards: from plant molecular evolution to mitigation strategies. J Hazard Mater 409:124495

    Article  PubMed  Google Scholar 

  • Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol Biochem 44:483–493

    Article  CAS  PubMed  Google Scholar 

  • Dreyer I, Gomez-Porras JL, Riano-Pachon DM, Hedrich R, Geiger D (2012) Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front Plant Sci 3:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenach C, De Angeli A (2017) Ion transport at the vacuole during stomatal movements. Plant Physiol 174:520–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenach C, Baetz U, Huck NV, Zhang J, De Angeli A, Beckers GJM et al (2017) ABA-induced stomatal closure involves ALMT4, a phosphorylation-dependent vacuolar anion channel of Arabidopsis. Plant Cell 29:2552–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzanati O, Mouzeyar S, Roche J (2020) Dynamics of the transcriptome response to heat in the Moss Physcomitrella patens. Int J Mol Sci 21:1512

    Article  CAS  PubMed Central  Google Scholar 

  • Fang Q, Zhou F, Zhang Y, Singh S, Huang CF (2021) Degradation of STOP1 mediated by the F-box proteins RAH1 and RAE1 balances aluminum resistance and plant growth in Arabidopsis thaliana. Plant J 106:493–506

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Fan X, Miller AJ, Xu G (2020) Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis. J Exp Bot 71:4380–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichtner F, Dissanayake IM, Lacombe B, Barbier F (2020) Sugar and nitrate sensing: a multi-billion-year story. Trends Plant Sci 26:352–374

    Article  PubMed  Google Scholar 

  • Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S et al (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107:8023–8028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A et al (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 4:ra32

    Article  PubMed  Google Scholar 

  • Geisler M, Hegedus T (2020) A twist in the ABC: regulation of ABC transporter trafficking and transport by FK506-binding proteins. FEBS Lett 594:3986–4000

    Article  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G et al (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63:635–674

    Article  PubMed  Google Scholar 

  • Gruber BD, Ryan PR, Richardson AE, Tyerman SD, Ramesh S, Hebb DM et al (2010) HvALMT1 from barley is involved in the transport of organic anions. J Exp Bot 61:1455–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo FQ, Young J, Crawford NM (2003) The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell 15:107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Xu C-b, Sun X-j, Hu Z, Fan S-j, Jiang Q-y et al (2019) TaSAUR78 enhances multiple abiotic stress tolerance by regulating the interacting gene TaVDAC1. J Integr Agr 18:2682–2690

    Article  CAS  Google Scholar 

  • Guo B, Li Y, Wang S, Li D, Lv C, Xu R (2020) Characterization of the nitrate transporter gene family and functional identification of HvNRT21 in barley (Hordeum vulgare L.). PLoS ONE 15:e0232056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266

    Article  CAS  PubMed  Google Scholar 

  • Haas M, Himmelbach A, Mascher M (2020) The contribution of cis- and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions. J Exp Bot 71:2573–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton ES, Schlegel AM, Haswell ES (2015) United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol 66:113–137

    Article  CAS  PubMed  Google Scholar 

  • Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R (2020) The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Front Plant Sci 11:618491

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris BJ, Harrison CJ, Hetherington AM, Williams TA (2020) Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Curr Biol 30:2001–2012

    Article  CAS  PubMed  Google Scholar 

  • Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse J-M (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734

    Article  CAS  PubMed  Google Scholar 

  • Hechenberger M, Schwappach B, Fischer WN, Frommer WB, Jentsch TJ, Steinmeyer K (1996) A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem 271:33632–33638

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Geiger D (2017) Biology of SLAC1-type anion channels - from nutrient uptake to stomatal closure. New Phytol 216:46–61

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9:3889–3892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemono M, Ubrig E, Azeredo K, Salinas-Giege T, Drouard L, Duchene AM (2020) Arabidopsis voltage-dependent anion channels (VDACs): overlapping and specific functions in mitochondria. Cells 9:1023

    Article  CAS  PubMed Central  Google Scholar 

  • Herzog M, Striker GG, Colmer TD, Pedersen O (2016) Mechanisms of waterlogging tolerance in wheat—a review of root and shoot physiology. Plant Cell Environ 39:1068–1086

    Article  CAS  PubMed  Google Scholar 

  • Hills A, Chen ZH, Amtmann A, Blatt MR, Lew VL (2012) OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. Plant Physiol 159:1026–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekenga OA (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homble F, Krammer EM, Prevost M (2012) Plant VDAC: facts and speculations. Biochim Biophys Acta 1818:1486–1501

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Deng F, Chen G, Chen X, Gao W, Long L et al (2020) Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Front Plant Sci 11:909

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang S, Ding M, Roelfsema MRG, Dreyer I, Scherzer S, Al-Rasheid KAS et al (2021) Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1. Sci Adv 7:eabg4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S et al (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov S, Hilo A, Rizzo P, Tandron Moya YA, Rolletschek H, Borisjuk L et al (2020) Adaptation strategies of halophytic barley Hordeum marinum ssp. marinum to high salinity and osmotic stress. Int J Mol Sci 21:9019

    Article  CAS  PubMed Central  Google Scholar 

  • Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Pan R, Wu C, Xu L, Abdelaziz ME, Oelmüller R et al (2020) Piriformospora indica enhances freezing tolerance and post-thaw recovery in Arabidopsis by stimulating the expression of CBF genes. Plant Signal Behav 15:1745472

    Article  PubMed  PubMed Central  Google Scholar 

  • Jossier M, Kroniewicz L, Dalmas F, Le Thiec D, Ephritikhine G, Thomine S et al (2010) The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J 64:563–576

    Article  CAS  PubMed  Google Scholar 

  • Junlin L, Lei H, Yanhua S, Hongen G, Huanchao Z (2019) Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure. Plant Physiol Biochem 143:340–350

    Article  PubMed  Google Scholar 

  • Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P, Pandey GK (2020) VDAC and its interacting partners in plant and animal systems: an overview. Crit Rev Biotechnol 40:715–732

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Taneja M, Tyagi S, Sharma A, Singh K, Upadhyay SK (2020) Genome-wide characterization and expression analysis suggested diverse functions of the mechanosensitive channel of small conductance-like (MSL) genes in cereal crops. Sci Rep 10:16583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khraiwesh B, Qudeimat E, Thimma M, Chaiboonchoe A, Jijakli K, Alzahmi A et al (2015) Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response. Sci Rep 5:17434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Jin JY, Alejandro S, Martinoia E, Lee Y (2010) Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol Plant 139:170–180

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kobayashi Y, Sugimoto M, Lakshmanan V, Iuchi S, Kobayashi M et al (2013) Characterization of the complex regulation of AtALMT1 expression in response to phytohormones and other inducers. Plant Physiol 162:732–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M et al (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME, Fricker M et al (2016) MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J 88:809–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann J, Jorgensen ME, Fratz S, Muller HM, Kusch J, Scherzer S et al (2021) Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis. Curr Biol 31:3575–3585

    Article  CAS  PubMed  Google Scholar 

  • Leran S, Munos S, Brachet C, Tillard P, Gojon A, Lacombe B (2013) Arabidopsis NRT1.1 is a bidirectional transporter involved in root-to-shoot nitrate translocation. Mol Plant 6:1984–1987

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Xu ZS, He GY, Yang GX, Chen M, Li LC et al (2013) The voltage-dependent anion channel 1 (AtVDAC1) negatively regulates plant cold responses during germination and seedling development in Arabidopsis and interacts with calcium sensor CBL1. Int J Mol Sci 14:701–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Li X, Wei Z, Liu F (2020a) ABA-mediated modulation of elevated CO2 on stomatal response to drought. Curr Opin Plant Biol 56:174–180

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hu Y, Wang J, Liu X, Zhang W, Sun L (2020b) Structural insights into a plant mechanosensitive ion channel MSL1. Cell Rep 30:4518–4527

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Pineros MA, Tian J, Yao Z, Sun L, Liu J et al (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligaba K, Ryan PR, Shibasaka M (2006) The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol 142:1294–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind C, Dreyer I, Lopez-Sanjurjo EJ, von Meyer K, Ishizaki K, Kohchi T et al (2015) Stomatal guard cells co-opted an ancient ABA-dependent desiccation survival system to regulate stomatal closure. Curr Biol 25:928–935

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhao Y, Zhao X, Dong J, Yuan Z (2020) Genome-wide identification and expression analysis of the CLC gene family in pomegranate (Punica granatum) reveals its roles in salt resistance. BMC Plant Biol 20:560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Mak M, Babla M, Wang F, Chen G, Veljanoski F et al (2014) Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley. Front Plant Sci 5:634

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Bai L (2021) Elevated CO2 and reactive oxygen species in stomatal closure. Plants 10:410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maierhofer T, Lind C, Huttl S, Scherzer S, Papenfuss M, Simon J et al (2014) A single-pore residue renders the Arabidopsis root anion channel SLAH2 highly nitrate selective. Plant Cell 26:2554–2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maksaev G, Haswell ES (2012) MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc Natl Acad Sci USA 109:19015–19020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannella CA (1997) On the structure and gating mechanism of the mitochondrial channel, VDAC. J Bioenergy Biomembr 29:525–531

    Article  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdam SAM, Brodribb TJ, Banks JA, Hedrich R, Atallah NM, Cai C et al (2016) Abscisic acid controlled sex before transpiration in vascular plants. Proc Natl Acad Sci USA 113:12862–12867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros DB, Fernie AR, Araujo WL (2018) Discriminating the function(s) of guard cell ALMT Channels. Trends Plant Sci 23:649–651

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KA et al (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Scholz-Starke J, De Angeli A, Kovermann P, Burla B, Gambale F et al (2011) Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation. Plant J 67:247–257

    Article  CAS  PubMed  Google Scholar 

  • Muller HM, Schafer N, Bauer H, Geiger D, Lautner S, Fromm J et al (2017) The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. New Phytol 216:150–162

    Article  PubMed  Google Scholar 

  • Nedelyaeva OI, Shuvalov AV, Balnokin YV (2020) Chloride channels and transporters of the clc family in plants. Russ J Plant Physiol 67:767–784

    Article  CAS  Google Scholar 

  • Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M et al (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486

    Article  CAS  PubMed  Google Scholar 

  • Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23:1–16

    Article  PubMed  Google Scholar 

  • Nguyen CT, Agorio A, Jossier M, Depre S, Thomine S, Filleur S (2016) Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in Arabidopsis thaliana. Plant Cell Physiol 57:764–775

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A (2017) Climate change, CO2, and defense: the metabolic, redox, and signaling perspectives. Trends Plant Sci 22:857–870

    Article  CAS  PubMed  Google Scholar 

  • Pacak A, Barciszewska-Pacak M, Swida-Barteczka A, Kruszka K, Sega P, Milanowska K et al (2016) Heat stress affects Pi-related genes expression and inorganic phosphate deposition/accumulation in barley. Front Plant Sci 7:926

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan R, Jiang W, Wang Q, Xu L, Shabala S, Zhang WY (2019) Differential response of growth and photosynthesis in diverse cotton genotypes under hypoxia stress. Photosynthetica 57:772–779

    Article  CAS  Google Scholar 

  • Pantoja O (2021) Recent advances in the physiology of ion channels in plants. Annu Rev Plant Biol 72:4.1-4.33

    Article  Google Scholar 

  • Pereira JF, Ryan PR (2019) The role of transposable elements in the evolution of aluminium resistance in plants. J Exp Bot 70:41–54

    Article  CAS  PubMed  Google Scholar 

  • Piñeros MA, Cançado GM, Maron LG, Lyi SM, Menossi M, Kochian LV (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1–an anion-selective transporter. Plant J 53:352–367

    Article  PubMed  Google Scholar 

  • Pottosin II, Schönknecht G (1995) Patch clamp study of the voltage-dependent anion channel in the thylakoid membrane. J Membr Biol 148:143–156

    Article  CAS  PubMed  Google Scholar 

  • Qi GN, Yao FY, Ren HM, Sun SJ, Tan YQ, Zhang ZC et al (2018a) The S-Type anion channel ZmSLAC1 plays essential roles in stomatal closure by mediating nitrate efflux in maize. Plant Cell Physiol 59:614–623

    Article  CAS  PubMed  Google Scholar 

  • Qi YH, Mao FF, Zhou ZQ, Liu DC, Min Y, Deng XY et al (2018b) The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 255:1651–1665

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SA, Tyerman SD, Gilliham M, Xu B (2017) γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 74:1577–1603

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Su Q, Hussain J, Tang S, Song W, Sun Y et al (2021) Slow anion channel GhSLAC1 is essential for stomatal closure in response to drought stress in cotton. J Plant Physiol 258–259:153360

    Article  PubMed  Google Scholar 

  • Roelfsema MR, Hedrich R, Geiger D (2012) Anion channels: master switches of stress responses. Trends Plant Sci 17:221–229

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Méndez KJ, Sánchez Segura L, Chagolla L A, Lino A B, González De La Vara LE (2021) Voltage-dependent anion-selective channels and other mitochondrial membrane proteins form diverse complexes in beetroots subjected to flood-induced programmed cell death. Front Plant Sci 1831

  • Rurek M, Czolpinska M, Pawlowski TA, Krzesinski W, Spizewski T (2018) Cold and heat stress diversely alter both cauliflower respiration and distinct mitochondrial proteins including OXPHOS components and matrix enzymes. Int J Mol Sci 19:877

    Article  PubMed Central  Google Scholar 

  • Saito S, Uozumi N (2019) Guard cell membrane anion transport systems and their regulatory components: an elaborate mechanism controlling stress-induced stomatal closure. Plants 8:9

    Article  CAS  PubMed Central  Google Scholar 

  • Sanyal SK, Kanwar P, Fernandes JL, Mahiwal S, Yadav AK, Samtani H et al (2020) Arabidopsis mitochondrial voltage-dependent anion channels are involved in maintaining reactive oxygen species homeostasis, oxidative and salt stress tolerance in yeast. Front Plant Sci 11:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR et al (2010) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  Google Scholar 

  • Schafer N, Maierhofer T, Herrmann J, Jorgensen ME, Lind C, von Meyer K et al (2018) A Tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate. Curr Biol 28:1370–1379

    Article  PubMed  Google Scholar 

  • Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89:5025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Schmidt C, Sheaffer J (1993) Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell 5:1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma T, Dreyer I, Kochian L, Piñeros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7:1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Singh G, Bhattacharya S, Singh A (2018) Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress. PLoS ONE 13:e0203266

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    Article  CAS  PubMed  Google Scholar 

  • Silvia GHS, Adriana PS, Tania MI, Eduardo GS, Talita C (2016) Genome-wide analysis of mechanosensitive channel of small conductance (MscS)-like gene family in common bean. Afr J Biotechnol 15:580–592

    Article  Google Scholar 

  • Subba A, Tomar S, Pareek A, Singla-Pareek SL (2021) The chloride channels: silently serving the plants. Physiol Plant 171:688–702

    Article  CAS  PubMed  Google Scholar 

  • Suh SJ, Wang YF, Frelet A, Leonhardt N, Klein M, Forestier C et al (2007) The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. J Biol Chem 282:1916–1924

    Article  CAS  PubMed  Google Scholar 

  • Sun SJ, Qi GN, Gao QF, Wang HQ, Yao FY, Hussain J et al (2016) Protein kinase OsSAPK8 functions as an essential activator of S-type anion channel OsSLAC1, which is nitrate-selective in rice. Planta 243:489–500

    Article  CAS  PubMed  Google Scholar 

  • Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG (2019) Acquiring control: the evolution of stomatal signalling pathways. Trends Plant Sci 24:342–351

    Article  CAS  PubMed  Google Scholar 

  • Sussmilch FC, Maierhofer T, Herrmann J, Voss LJ, Hedrich R (2021) Gaining or cutting SLAC: the evolution of plant guard cell signalling pathways

  • Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y et al (2016) A dicarboxylate transporter, LjALMT4, mainly expressed in nodules of Lotus japonicus. Mol Plant Microbe Interact 29:584–592

    Article  CAS  PubMed  Google Scholar 

  • Tampieri E, Baraldi E, Carnevali F, Frascaroli E, De Santis A (2011) The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. J Bioenergy Biomembr 43:611–621

    Article  CAS  Google Scholar 

  • Tian W, Hou C, Ren Z, Pan Y, Jia J, Zhang H et al (2015) A molecular pathway for CO2 response in Arabidopsis guard cells. Nat Commun 6:6057

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Girault T, Guichard M, Thomine S, Leblanc-Fournier N, Moulia B et al (2021) Cellular transduction of mechanical oscillations in plants by the plasma-membrane mechanosensitive channel MSL10. Proc Natl Acad Sci USA 118:e1919402118

    Article  CAS  PubMed  Google Scholar 

  • Um TY, Lee S, Kim J-K, Jang G, Choi YD (2018) CHLORIDE CHANNEL 1 promotes drought tolerance in rice, leading to increased grain yield. Plant Biotechnol Rep 12:283–293

    Article  Google Scholar 

  • Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G et al (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veley KM, Marshburn S, Clure CE, Haswell ES (2012) Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. Curr Biol 22:408–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veley KM, Maksaev G, Frick EM, January E, Kloepper SC, Haswell ES (2014) Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity. Plant Cell 26:3115–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vothknecht UC, Szabo I (2020) Channels and transporters for inorganic ions in plant mitochondria: prediction and facts. Mitochondrion 53:224–233

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu Y, Yang P (2012) Proteomic studies of the abiotic stresses response in model moss—Physcomitrella patens. Front Plant Sci 3:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S et al (2009) Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics 9:4529–4538

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Su SZ, Wu Y, Li SP, Shan XH, Liu HK et al (2015) Overexpression of maize chloride channel gene ZmCLC-d in Arabidopsis thaliana improved its stress resistance. Biol Plant 59:55–64

    Article  CAS  Google Scholar 

  • Wang Y, Chen YF, Wu WH (2021) Potassium and phosphorus transport and signaling in plants. J Integr Plant Biol 63:34–52

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Maser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White MM, Miller C (1979) A voltage-gated anion channel from the electric organ of Torpedo californica. J Biol Chem 254:10161–10166

    Article  CAS  PubMed  Google Scholar 

  • Widiez T, Symeonidi A, Luo C, Lam E, Lawton M, Rensing SA (2014) The chromatin landscape of the moss Physcomitrella patens and its dynamics during development and drought stress. Plant J 79:67–81

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Gruber BD, Delhaize E, White RG, James RA, You J et al (2015) The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism. Physiol Plant 153:183–193

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhu J, Liu J, Wang J, Ding Z, Tian H (2021) SIZ1 negatively regulates aluminum resistance by mediating the STOP1-ALMT1 pathway in Arabidopsis. J Integr Plant Biol 00:1–15

    Google Scholar 

  • Yamamoto Y, Negi J, Wang C, Isogai Y, Schroeder JI, Iba K (2016) The Transmembrane region of guard cell SLAC1 channels perceives CO2 signals via an ABA-independent pathway in Arabidopsis. Plant Cell 28:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, He H, Tong S, Zhang W, Wang J, Li X et al (2009) Voltage-dependent anion channel 2 of Arabidopsis thaliana (AtVDAC2) is involved in ABA-mediated early seedling development. Int J Mol Sci 10:2476–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XY, Chen ZW, Xu T, Qu Z, Pan XD, Qin XH et al (2011) Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature. Plant Cell 23:1093–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Yuan G, Zhang Q, Xuan L, Li J, Zhou L et al (2021) Transcriptome and metabolome analyses reveal the pivotal role of hydrogen sulfide in promoting submergence tolerance in Arabidopsis. Environ Exp Bot 183:104365

    Article  CAS  Google Scholar 

  • Young MJ, Bay DC, Hausner G, Court DA (2007) The evolutionary history of mitochondrial porins. BMC Evol Biol 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Takano T, Liu S, Zhang X (2015) Arabidopsis mitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2. FEBS Lett 589:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Wang Y, Chan KX, Marchant DB, Franks PJ, Randall D et al (2019) Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proc Natl Acad Sci USA 116:5015–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zifarelli G, Pusch M (2010) CLC transport proteins in plants. FEBS Lett 584:2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Zorb C, Schmitt S, Muhling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441–4449

    Article  PubMed  Google Scholar 

  • Zou Y, Chintamanani S, He P, Fukushige H, Yu L, Shao M et al (2016) A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis. J Integr Plant Biol 58:600–609

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Qi Li (Zhejiang University) and Hanna Amoanimaa-Dede (Yangtze University, the same below) for the discussion on the original draft and Qingfeng Zheng, Xingcan Zhao, Qianqun Yang, Zhenghong Huang and Wen Li for their contribution in data collection. This research was funded by the National Natural Science Foundation of China (32170276, 32001456), Major International (Regional) Joint Research Project from NSFC-ASRT (32061143044), and Yangtze University research funds. Z-HC is funded by Australian Research Council (DE1401011143) and Horticulture Innovation Australia (VG16070, VG17003, and LP18000).

Author information

Authors and Affiliations

Authors

Contributions

GC and Z-HC conceived the review. WJ analyzed the data and prepared all the figures together with GC, TT, and XC, WJ, GC, and Z-HC analyzed the results and wrote the manuscript with support from FD, FZ, RP, WZ, WJ, GC, and Z-HC conducted final editing of the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Guang Chen or Zhong-Hua Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Tong, T., Chen, X. et al. Molecular response and evolution of plant anion transport systems to abiotic stress. Plant Mol Biol 110, 397–412 (2022). https://doi.org/10.1007/s11103-021-01216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-021-01216-x

Keywords

Navigation