Skip to main content

Advertisement

Log in

Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Agronomic traits controlling the formation, architecture and physiology of source and sink organs are main determinants of rice productivity. Semi-dwarf rice varieties with low tiller formation but high seed production per panicle and dark green and thick leaves with prolonged source activity are among the desirable traits to further increase the yield potential of rice. Here, we report the functional characterization of a zinc finger transcription factor, OsGATA12, whose overexpression causes increased leaf greenness, reduction of leaf and tiller number, and affects yield parameters. Reduced tillering allowed testing the transgenic plants under high density which resulted in significantly increased yield per area and higher harvest index compared to wild-type. We show that delayed senescence of transgenic plants and the corresponding longer stay-green phenotype is mainly due to increased chlorophyll and chloroplast number. Further, our work postulates that the increased greenness observed in the transgenic plants is due to more chlorophyll synthesis but most significantly to decreased chlorophyll degradation, which is supported by the reduced expression of genes involved in the chlorophyll degradation pathway. In particular we show evidence for the down-regulation of the STAY GREEN RICE gene and in vivo repression of its promoter by OsGATA12, which suggests a transcriptional repression function for a GATA transcription factor for prolonging the onset of senescence in cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albacete AA, Martínez-Andújar C, Pérez-Alfocea F (2014) Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32:12–30

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behringer C, Schwechheimer C (2015) B-GATA transcription factors - insights into their structure, regulation, and role in plant development. Front Plant Sci 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Behringer C, Bastakis E, Ranftl QL, Mayer KF, Schwechheimer C (2014) Functional diversification within the family of B-GATA transcription factors through the leucine-leucine-methionine domain. Plant Physiol 166:293–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein SJ (2005) Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. Plant J 44:680–692

    Article  CAS  PubMed  Google Scholar 

  • Binyamin L, Falah M, Portnoy V, Soudry E, Gepstein S (2001) The early light-induced protein is also produced during leaf senescence of Nicotiana tabacum. Planta 212:591–597

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Bárcenas AT, Valdez-Alarcón JJ, Martínez-Trujillo M, Chen L, Xoconostle-Cázares B, Lucas WJ, Herrera-Estrella L (2000) Tissue-specific and developmental pattern of expression of the rice sps1 gene. Plant Physiol 124:641–654

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 7:417–427

    Article  CAS  PubMed  Google Scholar 

  • Chiang YH, Zubo YO, Tapken W, Kim HJ, Lavanway AM, Howard L et al (2012) Functional characterization of the GATA transcription factors GNC and CGA1 reveals their key role in chloroplast development, growth, and division in Arabidopsis. Plant Physiol 160:332–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lucas M, Prat S (2014) PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol 202:1126–1141

    Article  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  • Gladun IV, Karpov EA (1993) Distribution of assimilates from the flag leaf of rice during the reproductive period of development. Russ J Plant Physiol 40:215–219

    Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82:505–517

    Article  PubMed  Google Scholar 

  • Hudson D, Guevara D, Yaish MW, Hannam C, Long N, Clarke JD et al (2011) GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis. PLoS ONE 6:e26765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson D, Guevara DR, Hand AJ, Xu Z, Hao L, Chen X et al (2013) Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. Plant Physiol 162:132–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M (2013) Genes offering the potential for designing yield-related traits in rice. Curr Opin Plant Biol 16:213–220

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Nazar R, Khan MIR, Masood A, Khan NA (2011) Role of gibberellins in regulation of source–sink relations under optimal and limiting environmental conditions. Curr Sci 100:998–1007

    CAS  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G et al (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2003) Productivity improvements in rice. Nutr Rev 61:S114–S116

    Article  PubMed  Google Scholar 

  • Koltai H (2014) Receptors, repressors, PINs: a playground for strigolactone signaling. Trends Plant Sci 19:727–733

    Article  CAS  PubMed  Google Scholar 

  • Lee RH, Wang CH, Huang LT, Chen SC (2001) Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52:1117–1121

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Peng J, Wen X, Guo H (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence. J Integr Plant Biol 54:526–539

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L et al (2014a) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA 111:10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang WH, Shang F, Lin QT, Lou C, Zhang J (2014b) Tillering and panicle branching genes in rice. Gene 537:1–5

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649–656

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y (2008) Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol 67:37–55

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Coneva V, Casaretto JA, Ying S, Mahmood K, Liu F et al (2015) OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. Plant J 83:913–925

    Article  CAS  PubMed  Google Scholar 

  • Luo PG, Deng KJ, Hu XY, Li LQ, Li X, Chen JB et al (2013) Chloroplast ultrastructure regeneration with protection of photosystem II is responsible for the functional ‘stay-green’ trait in wheat. Plant Cell Environ 36:683–696

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Zheng J, Huang R, Huang Y, Wang H, Jiang L, Fang X (2016) Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep 35:2423–2433

    Article  PubMed  Google Scholar 

  • Małgorzata G, Barbara Z (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624

    Google Scholar 

  • Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K et al (2010) OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet 42:545–549

    Article  CAS  PubMed  Google Scholar 

  • Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M (2009) Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59:940–952

    Article  CAS  PubMed  Google Scholar 

  • Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y et al (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patient RK, McGhee JD (2002) The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 12:416–422

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  CAS  PubMed  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter R, Behringer C, Müller IK, Schwechheimer C (2010) The GATA type transcription factors GNC and GNL/CGA1 repress gibberellins signaling downstream from DELLA proteins and PHYTOCHROME INTERACTING FACTORS. Genes Dev 24:2093–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter R, Behringer C, Zourelidou M, Schwechheimer C (2013) Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proc Natl Acad Sci USA 110:13192–13197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Rong H, Tang Y, Zhang H, Wu P, Chen Y, Li M et al (2013) The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J Plant Physiol 170:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M et al (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Park SY, Paek NC (2015) The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation. Mol Cells 38:390–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D et al (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:126–131

    Article  CAS  PubMed  Google Scholar 

  • Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y et al (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Hao Q, Tian F, Li Q, Wang W (2016) Cytokinin-regulated sucrose metabolism in stay-green wheat phenotype. PLoS ONE 11:e0161351

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Purdy S, MacLean JA, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot 57:391–399

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K et al (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zha M, Li Y, Ding Y, Chen L, Ding C, Wang S (2015) The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep 34:1647–1662

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J (2006) Grain filling of cereals under soil drying. New Phytol 169:223–236

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  CAS  PubMed  Google Scholar 

  • Yoo SC, Cho SH, Zhang H, Paik HC, Lee CH, Li J et al (2007) Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol Cells 24:83–94

    CAS  PubMed  Google Scholar 

  • Yu SM, Lo SF, Ho THD (2015) Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20:844–857

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S (2014) Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol 56:559–570

    Article  CAS  PubMed  Google Scholar 

  • Zhang SY, Li G, Fang J, Chen W, Jiang H, Zou J et al (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J Integr Plant Biol 52:626–638

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhou Y, Ding L, Wu Z, Liu R, Meyerowitz EM (2013) Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in Arabidopsis. Plant Cell 25:83–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Bai MY, Chong K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada to SJR, and funding from Syngenta Biotechnology, Inc.

Authors contributions

GL designed and performed the cloning experiments, generation of transgenics, collected phenotypic data and tissues, worked on gene expression analysis and contributed to manuscript writing. JAC helped with density experiments, performed microarray and qRT-PCR data analyses, interpreted the data and wrote the manuscript. SY helped with the generation of transgenic lines and qRT-PCR analysis. KM performed the transcriptional activation in yeast. FL performed the promoter repression assay. YMB and SJR helped conceiving the study, participated in its coordination and contributed to manuscript editing. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Casaretto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Guangwen Lu and José A. Casaretto have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Casaretto, J.A., Ying, S. et al. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting. Plant Mol Biol 94, 215–227 (2017). https://doi.org/10.1007/s11103-017-0604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0604-x

Keywords

Navigation