Skip to main content
Log in

Identification of early senescence-associated genes in rice flag leaves

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Leaf senescence is one of the key stages of plant leaf development. It is a highly complex but ordered process involving expression of large scale senescence associated genes, and its molecular mechanisms still remain unclear. By using suppression subtractive hybridization, 815 ESTs that are up-regulated at the onset of rice flag leaf senescence have been isolated. A total of 533 unigenes have been confirmed by macroarray detection and sequencing. 183 of these unigenes have GO annotations, involved in macromolecule metabolism, protein biosynthesis regulation, energy metabolism, gene expression regulations, detoxification, pathogenicity and stress, cytoskeleton organization and flower development. Another 121 unigenes co-localized with previously reported known stay-green QTLS. RT-PCR analysis on the other novel genes indicated that they can be up-regulated in natural early senescence and induced by hormone. Our results indicate that senescence is closely related to various metabolic pathways, thus providing new insight into the onset of leaf senescence mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Amino-cyclopropane-1-carboxylic acid

GA:

Gibberellin acid

GO:

Gene ontology

HR:

Hypersensitive response

KT:

Kinetin

PCD:

Programmed cell death

ROS:

Reactive oxygen species

SAGs:

Senescence associated genes

SSH:

Suppression subtractive hybridization

References

  • Abdelkhalik AF, Shishido R, Nomura K, Ikehashi H (2005) QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet 110:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Akama K, Akihiro T, Kitagawa M, Takaiwa F (2001) Rice (Oryza sativa) contains a novel isoform of glutamate decarboxylase that lacks an authentic calmodulin-binding domain at the C-terminus. Biochim Biophys Acta 1522:143–150

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ambler J, Morgan P, Jordan W (1987) Genetic regulation of senescence in tropical grass. In: Thomson W, Nothnage lE, Huffaker R (eds) Plant senescence: its biochemistry and physiology. Am Soc Plant Physiol, Rockville, pp 43–53

    Google Scholar 

  • Ansari MI, Lee RH, Chen S-CG (2005) A novel senescence-associated gene encoding γ-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plantarum 123:1–8

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Betania FQ, Yoo-Sun N, Edward H, Richard MA (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:279–282

    Google Scholar 

  • Bhalerao R, Keskitalo J, Sterky F, Erlandsson R, Bjorkbacka H, Birve SJ, Karlsson J, Gardestrom P, Gustafsson P, Lundeberg J (2003) Gene Expression in Autumn Leaves. Plant Physiol 131:430–442

    Article  PubMed  Google Scholar 

  • Bi X, Khush GS, Bennett J (2005) The Rice nucellin gene ortholog OsAsp1 encodes an active aspartic protease without a plant-specific insert and is strongly expressed in early embryo. Plant Cell Physiol 46:87–98

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R, James F, Raymond P, Pradet A (1991) Study of glucose starvation in excised maize root tips. Plant Physiol 96:619–626

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Plant J 44:810–825

    Article  PubMed  CAS  Google Scholar 

  • Cha KW, Lee YJ, Koh HJ, Lee BM, Nam YW, Paek NC (2002) Isolation, characterization, and mapping of the stay green mutant in rice. Theor Appl Genet 104:526–532

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Wan J, Jiang H, Gao XL, Wang PR, Xi J, Xu ZJ (2006) Cloning and expression analysis of OsNADPH1 gene from rice in drought stress response. Rice Sci 13:149–154

    Google Scholar 

  • Chen M, Liu L, Chen Y, Wu HK, Yu S (1994) Expression of a-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J 6:625–636

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, Park CY, Kim JC, Park BO, Koo SC (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor 1. Plant Physiol 132:1961–1972

    Article  PubMed  CAS  Google Scholar 

  • Cho SM, Shin SH, Kim KS, Kim YC, Eun MY, Cho BH (2004) Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens. Mol Cells 18:390–395

    PubMed  CAS  Google Scholar 

  • Chu Z, Ouyang Y, Zhang J, Yang H, Wang S (2004) Genome-wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive R gene xa13. Mol Genet Genomics 271:111–120

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  PubMed  CAS  Google Scholar 

  • Dhondt S, Geoffroy P, Stelmach BA, Legrand M, Heitz T (2000) Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J 23:431–440

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277:33105–33114

    Article  PubMed  CAS  Google Scholar 

  • Eason JR, Ryan DJ, Watson LM, Hedderley D, Christey MC, Braun RH, Coupe SA (2005) Suppression of the cysteine protease, aleurain, delays floret senescence in Brassica oleracea. Plant Mol Biol 57:645–657

    Article  PubMed  CAS  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development (Cambridge, England) 132:4563–4574

    CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Feinberg A, Vogelstein B (1983) A technique for radiolabelling DNA restriction fragment length polymorphisms to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Xue Q (2006) The serine carboxypeptidase like gene family of rice (Oryza sativa L. ssp. japonica). Funct Integr Genomics 6:14–24

    Article  PubMed  CAS  Google Scholar 

  • Fushimi T, Umeda M, Shimazaki T, Kato A, Toriyama K, Uchimiya H (1994) Nucleotide sequence of a rice cDNA similar to a maize NADP-dependent malic enzyme. Plant Mol Biol 24:965–967

    Article  PubMed  CAS  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1966–1967

    Article  Google Scholar 

  • Gentinetta E, Ceppi D, Lepori C, Perico G, Motto MFS (1986) A major gene for delayed senescence in maize. Pattern of photosynthates accumulation and inheritance. Plant Breed 97:193–203

    Article  CAS  Google Scholar 

  • Gepstein S (2004) Leaf senescence-not just a’wear and tear’phenomenon. Genome Biol 5:212

    Article  PubMed  Google Scholar 

  • Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MF, Yariv I, Dor C, Bassani M (2003) Large-scale identification of leaf senescence-associated genes. Plant J 36:629–642

    Article  PubMed  CAS  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602

    Article  CAS  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327

    Article  PubMed  CAS  Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    PubMed  CAS  Google Scholar 

  • Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    PubMed  CAS  Google Scholar 

  • He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716

    Article  PubMed  CAS  Google Scholar 

  • Higo H, Kishimoto N, Saito A, Higo K (1994) Molecular cloning and characterization of a cDNA encoding a small GTP-binding protein related to mammalian ADP-ribosylation factor from rice. Plant Sci 100:41–49

    Article  CAS  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389

    Article  PubMed  CAS  Google Scholar 

  • Hu HH, Dai MQ, Yao JL, Xiao B, Li XH, Zhang Q, Xiong LZ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Ingrid BD, Joseph JK (1999) Molecular mechanisms of cytokinin action. Plant Biol 2:359–364

    Google Scholar 

  • Janska H (2005) ATP-dependent proteases in plant mitochondria: what do we know about them today? Physiol Plant 123:399–405

    Article  CAS  Google Scholar 

  • Jiang GH, He YQ, Xu CG, Li XH, Zhang Q (2004) The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688–698

    Article  PubMed  CAS  Google Scholar 

  • Kai G, Miao Z, Qiu C, Zhang L, Zhao L, Li Z, Xu T, Zhang L, Gong Y, Zhao D (2004) Molecular cloning and characterization of a taxadienol acetyl transferase cDNA from Taxus × media. Plant Sci 167:759–764

    Article  CAS  Google Scholar 

  • Kaser M, Langer T (2000) Protein degradation in mitochondria. Semin Cell Dev Biol 11:181–190

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Wang CH, Huang LT, Chen SC (2001) Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  PubMed  CAS  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ, Cao ML, Xu CG, Chen H, Wei J, Zhang QF (2002) Cultivating rice with delaying leaf- senescence by PSAG12-ipt gene transformation. Acta Bot Sin 44:1333–1338

    CAS  Google Scholar 

  • Lohman K, Gan S, John M, Amasino R (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Plant Physiol 92:322–328

    Article  CAS  Google Scholar 

  • Małgorzata G, Barbara Z (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624

    Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    PubMed  CAS  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant cell 19:819

    Article  PubMed  CAS  Google Scholar 

  • Noji H, Yoshida M (2001) The rotary machine in the cell, ATP synthase. J Biol Chem 19:1665–1668

    Article  Google Scholar 

  • Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351:183–193

    Article  PubMed  CAS  Google Scholar 

  • Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, Lehrach H, Krobitsch S (2007) Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 18:1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Nooden LD, Guiamet JJ, John I (1997) senescence mechanisms. Physiol Plantarum 101:746–753

    Article  CAS  Google Scholar 

  • Nooden LD, Leopold AC (1978) Hormonal control of senescence and abscission. In: Letham DS, Higgins TJ, Goodwin PB (eds) Phytohormones and related compounds, pp 329–369

  • Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996) Senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30:739–754

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY 6, is associated with both senescence- and defence-related processes. Plant J 28:123–133

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of At WRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  PubMed  CAS  Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought-tolerant sorghum and cotton germplasm. Agric Water Manage 7:207–222

    Article  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  PubMed  CAS  Google Scholar 

  • Sariban E, Luebbers R, Kufe D (1988) Transcriptional and posttranscriptional control of c-fos gene expression in human monocytes. Mol Cell Biol 8:340–346

    PubMed  CAS  Google Scholar 

  • Shen G, Pang Y, Lin C, Wei C, Qian X, Jiang L, Du X, Li K, Attia K, Yang J (2003) Cloning and characterization of a novel Hsp100/Clp gene (OsClpD) from Oryza sativa. DNA Seq 14:285–293

    PubMed  CAS  Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  PubMed  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A (2003) The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant cell 15:2885–2899

    Article  PubMed  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  PubMed  CAS  Google Scholar 

  • Thomas H, Smart CM (1993) Crops that stay green. Ann Appl Biol 123:193–129

    Article  Google Scholar 

  • To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling online version contains web-only data. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32:275–302

    Article  PubMed  CAS  Google Scholar 

  • Wang HJ, Wan AR, Hsu CM, Lee KW, Yu SM, Jauh GY (2007) Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol 63:441–463

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi H (2006) Chloroplastic NAD (P) H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Abe K, Emori Y, Hosoyama H, Arai S (1991) Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J Biol Chem 266:16897–16902

    PubMed  CAS  Google Scholar 

  • Xiang T, Wang L, Pang J (2005) Cloning and characterization of a full-length cab gene encoding the light-harvesting chlorophyll a/b-binding proteins in rice (Oryza sativa L.). Acta Agron Sin 31:1227–1232

    CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101:7833–7838

    Article  PubMed  CAS  Google Scholar 

  • Yue B, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genet Sin 33:824–832

    Article  PubMed  CAS  Google Scholar 

  • Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183

    Article  PubMed  CAS  Google Scholar 

  • Zhang LD, Yuan DJ, Zhang JW, Wang S, Zhang Q (2003) A new method for EST clustering. Acta Genet Sin 30:147–153

    PubMed  Google Scholar 

  • Zheng B, MacDonald TM, Sutinen S, Hurry V, Clarke AK (2006) A nuclear-encoded ClpP subunit of the chloroplast ATP-dependent Clp protease is essential for early development in Arabidopsis thaliana. Planta 224:1103–1115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Program on Research and Development of Transgenic Plants, the National Natural Science Foundation of China and the National High Technology Research and Development Program of China (863 Program). We sincerely thank PhD students Meng Cai in National Center of Plant Gene Research for discussion, and PhD student Yibo Li for providing the molecular linkage map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Zhou, Y., Zhou, G. et al. Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol 67, 37–55 (2008). https://doi.org/10.1007/s11103-008-9300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9300-1

Keywords

Navigation