Skip to main content
Log in

The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Nitrogen availability and cytokinin could promote shoot branching in rice, whereas auxin and strigolactone inhibited it. The interaction between nitrogen availability and the three hormones is discussed.

Abstract

Rice shoot branching is strongly affected by nitrogen availability and the plant hormones auxin, cytokinin, and strigolactone; however, the interaction of them in the regulation of rice shoot branching remains a subject of debate. In the present study, nitrogen and the three hormones were used to regulate rice tiller bud growth in the indica rice variety Yangdao 6. Both nitrogen and CK promoted shoot branching in rice, whereas auxin and SL inhibited it. We used HPLC to determine the amounts of endogenous IAA and CK, and we used quantitative real-time PCR analysis to quantify the expression levels of several genes. Nitrogen enhanced the amount of CK by promoting the expression levels of OsIPTs in nodes. In addition, both nitrogen and CK downregulated the expression of genes related to SL synthesis in root and nodes, implying that the inhibition of SL synthesis by nitrogen may occur at least partially through the CK pathway. SL did not significantly reduce the amount of CK or the expression levels of OsIPT genes, but it did significantly reduce the amount of auxin and the auxin transport capacity in nodes. Auxin itself inhibited CK synthesis and promoted SL synthesis in nodes rather than in roots. Furthermore, we found that CK and SL quickly reduced and increased the expression of FC1 in buds, respectively, implying that FC1 might be a common target for the CK and SL pathways. Nitrogen and auxin delayed expression change patterns of FC1, potentially by changing the downstream signals for CK and SL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

6-BA:

6-Benzyladenine

CK:

Cytokinin

CKX:

Cytokinin oxidase/dehydrogenase

HPLC:

High-performance liquid chromatography

iP:

Isopentenyladenine

iPR:

iP riboside

iPRMP:

iPR 5′-monophosphate

IPT:

Adenosine phosphate-isopentenyltransferase

NAA:

1-Naphthaleneacetic acid

tZ:

Trans-zeatin

tZR:

Trans-zeatin riboside

tZRMP:

tZR 5′-monophosphate

SL:

Strigolactone

References

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    Article  PubMed Central  PubMed  Google Scholar 

  • Bainbridge K, Sorefan K, Ward S, Leyser O (2005) Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant J 44:569–580

    Article  CAS  PubMed  Google Scholar 

  • Balla J, Kalousek P, Reinohl V, Friml J, Prochazka S (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J Cell Mol Biol 65(4):571–577

    Article  CAS  Google Scholar 

  • Bangerth F (1994) Response of cytokinin concentration in the xylem exudates of bean (Phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance. Planta 194:439–442

    Article  CAS  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39

    Article  CAS  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Frim J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Chatfield S, Leyser O (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15:495–507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Braun N, de Saint Germain A, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150(1):482–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Muller D, Domagalsk MA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905–2913

    Article  CAS  PubMed  Google Scholar 

  • de Jong M, George G, Ongaro V, Williamson L, Willetts B, Ljung K, McCulloch H, Leyser O (2014) Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply. Plant Physiol 166(1):384–395

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding CQ, You J, Wang SH, Liu ZH, Li GH, Wang QS, Ding YF (2012) A proteomic approach to analyze nitrogen- and cytokinin-responsive proteins in rice roots. Mol Biol Rep 39(2):1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Ding CQ, You J, Chen L, Wang SH, Ding YF (2014) Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Rep 33(2):363–371

    Article  CAS  PubMed  Google Scholar 

  • Dobrev PI, Kaminek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    Article  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12(4):211–221

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158(1):487–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 149(4):1929–1944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • González-Grandío E, Poza-Carrión C, Sorzano COS, Cubas P (2013) BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell 25(3):834–850

    Article  PubMed Central  PubMed  Google Scholar 

  • Hayward A, Stirnberg P, Beveridge CA, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Janssen BJ, Drummond RS, Snowden KC (2014) Regulation of axillary shoot development. Curr Opin Plant Biol 17:28–35

    Article  PubMed  Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, HaurognéK Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    Article  CAS  PubMed  Google Scholar 

  • Li C, Bangerth F (1999) Autoinihibition of indoleacetic acid transport in the shoot of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol Plant 106:415–420

    Article  CAS  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21(5):1512–1525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Gu DD, Ding YF, Wang QS, Li GH, Wang SH (2011a) The relationship between nitrogen, auxin and cytokinin in the growth regulation of rice (Oryza sativa L.) tiller buds. Aust J Crop Sci 5(8):1019–1026

    CAS  Google Scholar 

  • Liu Y, Ding YF, Wang QS, Li GH, Xu JX, Liu ZH, Wang SH (2011b) Effect of plant growth regulators on growth of rice tiller bud and changes of endogenous hormones. Crop J 37(4):670–676

    CAS  Google Scholar 

  • Liu Y, Ding YF, Wang QS, Meng DX, Wang SH (2011c) Effects of nitrogen and 6-benzylaminopurine on rice tiller bud growth and changes in endogenous hormones and nitrogen. Crop Sci 51:786–792

    Article  CAS  Google Scholar 

  • Masona MG, Rossb JJ, Babstc BA, Wienclawc BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. PNAS 111(16):6092–6097

    Article  Google Scholar 

  • Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51(7):1127–1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagawa H, Jiang CJ, Sakakibara H, Kojima M, Honda I, Ajisaka H, Nishijima T, Koshioka M, Homma T, Mander LN, Takatsuji H (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J 41:512–523

    Article  CAS  PubMed  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci USA 106(41):17431–17436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sachs T, Thimann K (1967) The role of auxins and cytokinins in the release of buds from dominance. Am J Bot 54:136–144

    Article  CAS  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  CAS  PubMed  Google Scholar 

  • Sang D, Chen D, Liu G, Liang Y, Huang L, Meng X, Chu J, Sun X, Dong G, Yuan Y, Qian Q, Li J, Wang Y (2014) Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. PNAS 111(30):11199–11204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11:e1001474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snow R (1929) The transmission of inhibition through dead stretches of stem. Ann Bot 43:261–267

    CAS  Google Scholar 

  • Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G (2014) Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot 65(22):6735–6746

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Magome H, Takeda-Kamiya N, Yamaguchi S (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol 51(7):1118–1126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vieten A, Vanneste S, Wisniewska J, Benková E, Benjamins R, Beeckman T, Luschnig C, Frim J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531

    Article  CAS  PubMed  Google Scholar 

  • Xu JX, Ding CQ, Ding YF, Tang S, Zha MR, Luo BJ, Wang SH (2015) A proteomic approach to analyze differential regulation of proteins during bud outgrowth under apical dominance based on the auxin transport canalization model in rice (Oryza sativa L.). J Plant Growth Regul 34:122–136

    Article  CAS  Google Scholar 

  • Yoneyama K, Kisugi T, Xie X, Arakawa R, Ezawa T, Nomura T, Yoneyama K (2014) Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta 241:687–698

    Article  PubMed  Google Scholar 

  • Yoshida S (1975) Laboratory manual for physiological studies of rice. Science Press, Beijing, pp 57–64 (in Chinese)

    Google Scholar 

  • Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, Zhu L (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J Integr Plant Biol 52(7):626–638

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of National Science and Technology of China (Project No. 31371569), the National Natural Science Foundation of China (Project No. 31071364), the Science and Technology Department of China (Project No. 2013BAD07B09), and the Science and Technology Department of Jiangsu Province (Project No. BE2014393).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohua Wang.

Additional information

Communicated by W. Harwood.

J. Xu and M. Zha contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zha, M., Li, Y. et al. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep 34, 1647–1662 (2015). https://doi.org/10.1007/s00299-015-1815-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1815-8

Keywords

Navigation