Skip to main content

Advertisement

Log in

The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The microenvironment of pituitary adenomas (PAs) includes a range of non-tumoral cells, such as immune and stromal cells, as well as cell signaling molecules such as cytokines, chemokines and growth factors, which surround pituitary tumor cells and may modulate tumor initiation, progression, invasion, angiogenesis and other tumorigenic processes. The microenvironment of PAs has been actively investigated over the last years, with several immune and stromal cell populations, as well as different cytokines, chemokines and growth factors being recently characterized in PAs. Moreover, key microenvironment-related genes as well as immune-related molecules and pathways have been investigated, with immune check point regulators emerging as promising targets for immunotherapy. Understanding the microenvironment of PAs will contribute to a deeper knowledge of the complex biology of PAs, as well as will provide developments in terms of diagnosis, clinical management and ultimately treatment of patients with aggressive and/or refractory PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aflorei ED, Korbonits M (2014) Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol 117(3):379–394. https://doi.org/10.1007/s11060-013-1354-5

    Article  PubMed  Google Scholar 

  2. Melmed S (2020) Pituitary-tumor endocrinopathies. N Engl J Med 382(10):937–950. https://doi.org/10.1056/NEJMra1810772

    Article  CAS  PubMed  Google Scholar 

  3. Marques P, Korbonits M (2017) Genetic aspects of pituitary adenomas. Endocrinol Metab Clin North Am 46(2):335–374. https://doi.org/10.1016/j.ecl.2017.01.004

    Article  PubMed  Google Scholar 

  4. Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat Rev Endocrinol 10(7):423–435. https://doi.org/10.1038/nrendo.2014.64

    Article  CAS  PubMed  Google Scholar 

  5. Kasuki L, Raverot G (2019) Definition and diagnosis of aggressive pituitary tumors. Rev Endocr Metab Disord. https://doi.org/10.1007/s11154-019-09531-x

    Article  Google Scholar 

  6. Trouillas J, Jaffrain-Rea ML, Vasiljevic A, Raverot G, Roncaroli F, Villa C (2020) How to classify the pituitary neuroendocrine tumors (PitNET)s in 2020. Cancers (Basel) 12(2):10. https://doi.org/10.3390/cancers12020514

    Article  CAS  Google Scholar 

  7. Gadelha MR, Trivellin G, Hernandez Ramirez LC, Korbonits M (2013) Genetics of pituitary adenomas. Front Horm Res 41:111–140. https://doi.org/10.1159/000345673

    Article  CAS  PubMed  Google Scholar 

  8. Barry S, Korbonits M (2020) Update on the genetics of pituitary tumors. Endocrinol Metab Clin North Am 49(3):433–452. https://doi.org/10.1016/j.ecl.2020.05.005

    Article  PubMed  Google Scholar 

  9. Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7(5):257–266. https://doi.org/10.1038/nrendo.2011.40

    Article  CAS  PubMed  Google Scholar 

  10. Melmed S (2015) Pituitary tumors. Endocrinol Metab Clin North Am 44(1):1–9. https://doi.org/10.1016/j.ecl.2014.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Reincke M, Sbiera S, Hayakawa A, Theodoropoulou M, Osswald A, Beuschlein F et al (2015) Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 47(1):31–38. https://doi.org/10.1038/ng.3166

    Article  CAS  PubMed  Google Scholar 

  12. Srirangam Nadhamuni V, Korbonits M (2020) Novel insights into pituitary tumorigenesis: genetic and epigenetic mechanisms. Endocr Rev. https://doi.org/10.1210/endrev/bnaa006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ilie MD, Vasiljevic A, Raverot G, Bertolino P (2019) The microenvironment of pituitary tumors-biological and therapeutic implications. Cancers (Basel). https://doi.org/10.3390/cancers11101605

    Article  Google Scholar 

  14. Marques P, Grossman AB, Korbonits M (2020) The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 58:100852. https://doi.org/10.1016/j.yfrne.2020.100852

    Article  CAS  PubMed  Google Scholar 

  15. Drake LE, Macleod KF (2014) Tumour suppressor gene function in carcinoma-associated fibroblasts: from tumour cells via EMT and back again? J Pathol 232(3):283–288. https://doi.org/10.1002/path.4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balkwill FR (2012) The chemokine system and cancer. J Pathol 226(2):148–157. https://doi.org/10.1002/path.3029

    Article  CAS  PubMed  Google Scholar 

  17. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596. https://doi.org/10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  18. Falcone I, Conciatori F, Bazzichetto C, Ferretti G, Cognetti F, Ciuffreda L et al (2020) Tumor microenvironment: implications in melanoma resistance to targeted therapy and immunotherapy. Cancers (Basel). https://doi.org/10.3390/cancers12102870

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li JJ, Tsang JY, Tse GM (2021) Tumor microenvironment in breast cancer-updates on therapeutic implications and pathologic assessment. Cancers (Basel). https://doi.org/10.3390/cancers13164233

    Article  PubMed  PubMed Central  Google Scholar 

  20. Murakami T, Hiroshima Y, Matsuyama R, Homma Y, Hoffman RM, Endo I (2019) Role of the tumor microenvironment in pancreatic cancer. Ann Gastroenterol Surg 3(2):130–137. https://doi.org/10.1002/ags3.12225

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S et al (2019) Chemokines modulate the tumour microenvironment in pituitary neuroendocrine tumours. Acta Neuropathol Commun 7(1):172. https://doi.org/10.1186/s40478-019-0830-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Awad S et al (2019) Pituitary tumour fibroblast-derived cytokines influence tumour aggressiveness. Endocr Relat Cancer 26(12):853–865. https://doi.org/10.1530/ERC-19-0327

    Article  CAS  PubMed  Google Scholar 

  23. Principe M, Chanal M, Ilie MD, Ziverec A, Vasiljevic A, Jouanneau E et al (2020) Immune landscape of pituitary tumors reveals association between macrophages and gonadotroph tumor invasion. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa520

    Article  PubMed  Google Scholar 

  24. Gasser S, Lim LHK, Cheung FSG (2017) The role of the tumour microenvironment in immunotherapy. Endocr Relat Cancer 24(12):T283–T295. https://doi.org/10.1530/ERC-17-0146

    Article  CAS  PubMed  Google Scholar 

  25. Dai C, Liang S, Sun B, Kang J (2020) The progress of immunotherapy in refractory pituitary adenomas and pituitary carcinomas. Front Endocrinol (Lausanne) 11:608422. https://doi.org/10.3389/fendo.2020.608422

    Article  Google Scholar 

  26. Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22(1):33–40. https://doi.org/10.1016/j.semcancer.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  27. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  28. Iacovazzo D, Chiloiro S, Carlsen E, Bianchi A, Giampietro A, Tartaglione T et al (2019) Tumour-infiltrating cytotoxic T lymphocytes in somatotroph pituitary neuroendocrine tumours. Endocrine. https://doi.org/10.1007/s12020-019-02145-y

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lu JQ, Adam B, Jack AS, Lam A, Broad RW, Chik CL (2015) Immune cell infiltrates in pituitary adenomas: more macrophages in larger adenomas and more T cells in growth hormone adenomas. Endocr Pathol 26(3):263–272. https://doi.org/10.1007/s12022-015-9383-6

    Article  CAS  PubMed  Google Scholar 

  30. Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y et al (2021) Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics 11(8):3839–3852. https://doi.org/10.7150/thno.53749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yeung JT, Vesely MD, Miyagishima DF (2020) In silico analysis of the immunological landscape of pituitary adenomas. J Neurooncol. https://doi.org/10.1007/s11060-020-03476-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhou W, Zhang C, Zhang D, Peng J, Ma S, Wang X et al (2020) Comprehensive analysis of the immunological landscape of pituitary adenomas: implications of immunotherapy for pituitary adenomas. J Neurooncol 149(3):473–487. https://doi.org/10.1007/s11060-020-03636-z

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Guo X, Gao L, Deng K, Lian W, Bao X et al (2020) The immune profile of pituitary adenomas and a novel immune classification for predicting immunotherapy responsiveness. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa449

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lupi I, Manetti L, Caturegli P, Menicagli M, Cosottini M, Iannelli A et al (2010) Tumor infiltrating lymphocytes but not serum pituitary antibodies are associated with poor clinical outcome after surgery in patients with pituitary adenoma. J Clin Endocrinol Metab 95(1):289–296. https://doi.org/10.1210/jc.2009-1583

    Article  CAS  PubMed  Google Scholar 

  35. Barry S, Carlsen E, Marques P, Stiles CE, Gadaleta E, Berney DM et al (2019) Tumor microenvironment defines the invasive phenotype of AIP-mutation-positive pituitary tumors. Oncogene 38(27):5381–5395. https://doi.org/10.1038/s41388-019-0779-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nie D, Fang Q, Li B, Cheng J, Li C, Gui S et al (2021) Research advances on the immune research and prospect of immunotherapy in pituitary adenomas. World J Surg Oncol 19(1):162. https://doi.org/10.1186/s12957-021-02272-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mei Y, Bi WL, Agolia J, Hu C, Giantini Larsen AM, Meredith DM et al (2021) Immune profiling of pituitary tumors reveals variations in immune infiltration and checkpoint molecule expression. Pituitary 24(3):359–373. https://doi.org/10.1007/s11102-020-01114-3

    Article  CAS  PubMed  Google Scholar 

  38. Rossi ML, Jones NR, Esiri MM, Havas L, Al Izzi M, Coakham HB (1990) Mononuclear cell infiltrate and HLA-Dr expression in 28 pituitary adenomas. Tumori 76(6):543–547

    Article  CAS  PubMed  Google Scholar 

  39. Heshmati HM, Kujas M, Casanova S, Wollan PC, Racadot J, Van Effenterre R et al (1998) Prevalence of lymphocytic infiltrate in 1400 pituitary adenomas. Endocr J 45(3):357–361

    Article  CAS  PubMed  Google Scholar 

  40. Jacobs JF, Idema AJ, Bol KF, Nierkens S, Grauer OM, Wesseling P et al (2009) Regulatory T cells and the PD-L1/PD-1 pathway mediate immune suppression in malignant human brain tumors. Neuro Oncol 11(4):394–402. https://doi.org/10.1215/15228517-2008-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taniguchi-Ponciano K, Andonegui-Elguera S, Pena-Martinez E, Silva-Roman G, Vela-Patino S, Gomez-Apo E et al (2020) Transcriptome and methylome analysis reveals three cellular origins of pituitary tumors. Sci Rep 10(1):19373. https://doi.org/10.1038/s41598-020-76555-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hume DA, Halpin D, Charlton H, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci U S A 81(13):4174–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mander TH, Morris JF (1996) Development of microglia and macrophages in the postnatal rat pituitary. Cell Tissue Res 286(3):347–355

    Article  CAS  PubMed  Google Scholar 

  44. Fujiwara K, Yatabe M, Tofrizal A, Jindatip D, Yashiro T, Nagai R (2017) Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma. Cell Tissue Res 368(2):371–378. https://doi.org/10.1007/s00441-016-2564-x

    Article  CAS  PubMed  Google Scholar 

  45. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322. https://doi.org/10.1007/s10555-006-9001-7

    Article  PubMed  Google Scholar 

  46. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  47. Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB et al (2016) Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget 7(47):76565–76576. https://doi.org/10.18632/oncotarget.12088

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang PF, Wang TJ, Yang YK, Yao K, Li Z, Li YM et al (2018) The expression profile of PD-L1 and CD8(+) lymphocyte in pituitary adenomas indicating for immunotherapy. J Neurooncol 139(1):89–95. https://doi.org/10.1007/s11060-018-2844-2

    Article  CAS  PubMed  Google Scholar 

  49. Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, Zhang X et al (2018) The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly, cushing’s disease and endocrine-inactive subtypes. Clin Cancer Res 24(17):4126–4136. https://doi.org/10.1158/1078-0432.CCR-17-2206

    Article  CAS  PubMed  Google Scholar 

  50. Kemeny HR, Elsamadicy AA, Farber SH, Champion CD, Lorrey SJ, Chongsathidkiet P et al (2019) Targeting PD-L1 initiates effective anti-tumor immunity in a murine model of Cushing’s Disease. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-3486

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31(1–2):195–208. https://doi.org/10.1007/s10555-011-9340-x

    Article  PubMed  Google Scholar 

  52. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H (2015) Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel) 7(4):2443–2458. https://doi.org/10.3390/cancers7040902

    Article  Google Scholar 

  53. Moatassim-Billah S, Duluc C, Samain R, Jean C, Perraud A, Decaup E et al (2016) Anti-metastatic potential of somatostatin analog SOM230: indirect pharmacological targeting of pancreatic cancer-associated fibroblasts. Oncotarget 7(27):41584–41598. https://doi.org/10.18632/oncotarget.9296

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen WL, Huang CH, Chiou LL, Chen TH, Huang YY, Jiang CC et al (2010) Multiphoton imaging and quantitative analysis of collagen production by chondrogenic human mesenchymal stem cells cultured in chitosan scaffold. Tissue Eng Part C Methods 16(5):913–920. https://doi.org/10.1089/ten.TEC.2009.0596

    Article  CAS  PubMed  Google Scholar 

  55. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW (2002) Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115(Pt 1):39–50

    Article  CAS  PubMed  Google Scholar 

  56. Sundberg C, Ivarsson M, Gerdin B, Rubin K (1996) Pericytes as collagen-producing cells in excessive dermal scarring. Lab Invest 74(2):452–466

    CAS  PubMed  Google Scholar 

  57. Tofrizal A, Fujiwara K, Yashiro T, Yamada S (2016) Alterations of collagen-producing cells in human pituitary adenomas. Med Mol Morphol 49(4):224–232. https://doi.org/10.1007/s00795-016-0140-9

    Article  CAS  PubMed  Google Scholar 

  58. Lv L, Zhang S, Hu Y, Zhou P, Gao L, Wang M et al (2018) Invasive pituitary adenoma-derived tumor-associated fibroblasts promote tumor progression both in vitro and in vivo. Exp Clin Endocrinol Diabetes 126(4):213–221. https://doi.org/10.1055/s-0043-119636

    Article  CAS  PubMed  Google Scholar 

  59. Devnath S, Inoue K (2008) An insight to pituitary folliculo-stellate cells. J Neuroendocrinol 20(6):687–691. https://doi.org/10.1111/j.1365-2826.2008.01716.x

    Article  CAS  PubMed  Google Scholar 

  60. Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E (2012) Cellular and molecular specificity of pituitary gland physiology. Physiol Rev 92(1):1–38. https://doi.org/10.1152/physrev.00003.2011

    Article  CAS  PubMed  Google Scholar 

  61. Allaerts W, Vankelecom H (2005) History and perspectives of pituitary folliculo-stellate cell research. Eur J Endocrinol 153(1):1–12. https://doi.org/10.1530/eje.1.01949

    Article  CAS  PubMed  Google Scholar 

  62. Lauriola L, Cocchia D, Sentinelli S, Maggiano N, Maira G, Michetti F (1984) Immunohistochemical detection of folliculo-stellate cells in human pituitary adenomas. Virchows Arch B Cell Pathol Incl Mol Pathol 47(3):189–197

    Article  CAS  PubMed  Google Scholar 

  63. Sbarbati A, Fakhreddine A, Zancanaro C, Bontempini L, Cinti S (1991) Ultrastructural morphology of folliculo-stellate cells in human pituitary adenomas. Ultrastruct Pathol 15(3):241–248

    Article  CAS  PubMed  Google Scholar 

  64. Tachibana O, Yamashima T (1988) Immunohistochemical study of folliculo-stellate cells in human pituitary adenomas. Acta Neuropathol 76(5):458–464

    Article  CAS  PubMed  Google Scholar 

  65. Voit D, Saeger W, Ludecke DK (1999) Folliculo-stellate cells in pituitary adenomas of patients with acromegaly. Pathol Res Pract 195(3):143–147. https://doi.org/10.1016/S0344-0338(99)80026-0

    Article  CAS  PubMed  Google Scholar 

  66. Tortosa F, Pires M, Ortiz S (2016) Prognostic implications of folliculo-stellate cells in pituitary adenomas: relationship with tumoral behavior. Rev Neurol 63(7):297–302

    CAS  PubMed  Google Scholar 

  67. Renner U, Gloddek J, Arzt E, Inoue K, Stalla GK (1997) Interleukin-6 is an autocrine growth factor for folliculostellate-like TtT/GF mouse pituitary tumor cells. Exp Clin Endocrinol Diabetes 105(6):345–352. https://doi.org/10.1055/s-0029-1211777

    Article  CAS  PubMed  Google Scholar 

  68. Renner U, Gloddek J, Pereda MP, Arzt E, Stalla GK (1998) Regulation and role of intrapituitary IL-6 production by folliculostellate cells. Domest Anim Endocrinol 15(5):353–362

    Article  CAS  PubMed  Google Scholar 

  69. Grizzi F, Borroni EM, Vacchini A, Qehajaj D, Liguori M, Stifter S et al (2015) Pituitary adenoma and the chemokine network: a systemic view. Front Endocrinol (Lausanne) 6:141. https://doi.org/10.3389/fendo.2015.00141

    Article  Google Scholar 

  70. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R (2010) The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev 21(1):27–39. https://doi.org/10.1016/j.cytogfr.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  71. Marchesi F, Locatelli M, Solinas G, Erreni M, Allavena P, Mantovani A (2010) Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol 224(1–2):39–44. https://doi.org/10.1016/j.jneuroim.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  72. Ray D, Melmed S (1997) Pituitary cytokine and growth factor expression and action. Endocr Rev 18(2):206–228. https://doi.org/10.1210/edrv.18.2.0297

    Article  CAS  PubMed  Google Scholar 

  73. Haedo MR, Gerez J, Fuertes M, Giacomini D, Paez-Pereda M, Labeur M et al (2009) Regulation of pituitary function by cytokines. Horm Res 72(5):266–274. https://doi.org/10.1159/000245928

    Article  CAS  PubMed  Google Scholar 

  74. Arzt E, Pereda MP, Castro CP, Pagotto U, Renner U, Stalla GK (1999) Pathophysiological role of the cytokine network in the anterior pituitary gland. Front Neuroendocrinol 20(1):71–95. https://doi.org/10.1006/frne.1998.0176

    Article  CAS  PubMed  Google Scholar 

  75. Barry S CE, Gadaleta E, Berney DM, Chelala C, Crnogorac-Jurcevic T, Gabrovska P, Korbonits M (2017) The role of the microenvironment in the invasive phenotype of aryl-hydrocarbon receptor interacting protein (AIP) mutation positive pituitary tumours. Endocr Rev

  76. Florio T, Casagrande S, Diana F, Bajetto A, Porcile C, Zona G et al (2006) Chemokine stromal cell-derived factor 1alpha induces proliferation and growth hormone release in GH4C1 rat pituitary adenoma cell line through multiple intracellular signals. Mol Pharmacol 69(2):539–546. https://doi.org/10.1124/mol.105.015255

    Article  CAS  PubMed  Google Scholar 

  77. Massa A, Casagrande S, Bajetto A, Porcile C, Barbieri F, Thellung S et al (2006) SDF-1 controls pituitary cell proliferation through the activation of ERK1/2 and the Ca2+-dependent, cytosolic tyrosine kinase Pyk2. Ann N Y Acad Sci 1090:385–398. https://doi.org/10.1196/annals.1378.042

    Article  CAS  PubMed  Google Scholar 

  78. Lee Y, Kim JM, Lee EJ (2008) Functional expression of CXCR4 in somatotrophs: CXCL12 activates GH gene, GH production and secretion, and cellular proliferation. J Endocrinol 199(2):191–199. https://doi.org/10.1677/JOE-08-0250

    Article  CAS  PubMed  Google Scholar 

  79. Xing B, Kong YG, Yao Y, Lian W, Wang RZ, Ren ZY (2013) Study on the expression levels of CXCR4, CXCL12, CD44, and CD147 and their potential correlation with invasive behaviors of pituitary adenomas. Biomed Environ Sci 26(7):592–598. https://doi.org/10.3967/0895-3988.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  80. Vindelov SD, Hartoft-Nielsen ML, Rasmussen AK, Bendtzen K, Kosteljanetz M, Andersson AM et al (2011) Interleukin-8 production from human somatotroph adenoma cells is stimulated by interleukin-1beta and inhibited by growth hormone releasing hormone and somatostatin. Growth Horm IGF Res 21(3):134–139. https://doi.org/10.1016/j.ghir.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  81. Jones TH, Daniels M, James RA, Justice SK, McCorkle R, Price A et al (1994) Production of bioactive and immunoreactive interleukin-6 (IL-6) and expression of IL-6 messenger ribonucleic acid by human pituitary adenomas. J Clin Endocrinol Metab 78(1):180–187. https://doi.org/10.1210/jcem.78.1.8288702

    Article  CAS  PubMed  Google Scholar 

  82. Kurotani R, Yasuda M, Oyama K, Egashira N, Sugaya M, Teramoto A et al (2001) Expression of interleukin-6, interleukin-6 receptor (gp80), and the receptor’s signal-transducing subunit (gp130) in human normal pituitary glands and pituitary adenomas. Mod Pathol 14(8):791–797. https://doi.org/10.1038/modpathol.3880392

    Article  CAS  PubMed  Google Scholar 

  83. Velkeniers B, Vergani P, Trouillas J, D’Haens J, Hooghe RJ, Hooghe-Peters EL (1994) Expression of IL-6 mRNA in normal rat and human pituitaries and in human pituitary adenomas. J Histochem Cytochem 42(1):67–76. https://doi.org/10.1177/42.1.8263325

    Article  CAS  PubMed  Google Scholar 

  84. Arzt E, Buric R, Stelzer G, Stalla J, Sauer J, Renner U et al (1993) Interleukin involvement in anterior pituitary cell growth regulation: effects of IL-2 and IL-6. Endocrinology 132(1):459–467. https://doi.org/10.1210/endo.132.1.8419142

    Article  CAS  PubMed  Google Scholar 

  85. Lyson K, McCann SM (1991) The effect of interleukin-6 on pituitary hormone release in vivo and in vitro. Neuroendocrinology 54(3):262–266

    Article  CAS  PubMed  Google Scholar 

  86. Pereda MP, Lohrer P, Kovalovsky D, Perez Castro C, Goldberg V, Losa M et al (2000) Interleukin-6 is inhibited by glucocorticoids and stimulates ACTH secretion and POMC expression in human corticotroph pituitary adenomas. Exp Clin Endocrinol Diabetes 108(3):202–207

    Article  CAS  PubMed  Google Scholar 

  87. Sawada T, Koike K, Kanda Y, Ikegami H, Jikihara H, Maeda T et al (1995) Interleukin-6 stimulates cell proliferation of rat pituitary clonal cell lines in vitro. J Endocrinol Invest 18(2):83–90. https://doi.org/10.1007/BF03349706

    Article  CAS  PubMed  Google Scholar 

  88. Graciarena M, Carbia-Nagashima A, Onofri C, Perez-Castro C, Giacomini D, Renner U et al (2004) Involvement of the gp130 cytokine transducer in MtT/S pituitary somatotroph tumour development in an autocrine-paracrine model. Eur J Endocrinol 151(5):595–604

    Article  CAS  PubMed  Google Scholar 

  89. Castro CP, Giacomini D, Nagashima AC, Onofri C, Graciarena M, Kobayashi K et al (2003) Reduced expression of the cytokine transducer gp130 inhibits hormone secretion, cell growth, and tumor development of pituitary lactosomatotrophic GH3 cells. Endocrinology 144(2):693–700. https://doi.org/10.1210/en.2002-220891

    Article  CAS  PubMed  Google Scholar 

  90. Thiele JO, Lohrer P, Schaaf L, Feirer M, Stummer W, Losa M et al (2003) Functional in vitro studies on the role and regulation of interleukin-6 in human somatotroph pituitary adenomas. Eur J Endocrinol 149(5):455–461

    Article  CAS  PubMed  Google Scholar 

  91. Wu JL, Qiao JY, Duan QH (2016) Significance of TNF-alpha and IL-6 expression in invasive pituitary adenomas. Genet Mol Res. https://doi.org/10.4238/gmr.15017502

    Article  PubMed  Google Scholar 

  92. Feng J, Yu SY, Li CZ, Li ZY, Zhang YZ (2016) Integrative proteomics and transcriptomics revealed that activation of the IL-6R/JAK2/STAT3/MMP9 signaling pathway is correlated with invasion of pituitary null cell adenomas. Mol Cell Endocrinol 436:195–203. https://doi.org/10.1016/j.mce.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  93. Sweep CG, van der Meer MJ, Hermus AR, Smals AG, van der Meer JW, Pesman GJ et al (1992) Chronic stimulation of the pituitary-adrenal axis in rats by interleukin-1 beta infusion: in vivo and in vitro studies. Endocrinology 130(3):1153–1164. https://doi.org/10.1210/endo.130.3.1311230

    Article  CAS  PubMed  Google Scholar 

  94. Kovalovsky D, Paez Pereda M, Labeur M, Renner U, Holsboer F, Stalla GK et al (2004) Nur77 induction and activation are necessary for interleukin-1 stimulation of proopiomelanocortin in AtT-20 corticotrophs. FEBS Lett 563(1–3):229–233. https://doi.org/10.1016/S0014-5793(04)00303-5

    Article  CAS  PubMed  Google Scholar 

  95. Gong FY, Deng JY, Shi YF (2005) Stimulatory effect of interleukin-1beta on growth hormone gene expression and growth hormone release from rat GH3 cells. Neuroendocrinology 81(4):217–228. https://doi.org/10.1159/000087160

    Article  CAS  PubMed  Google Scholar 

  96. Arzt E, Stelzer G, Renner U, Lange M, Muller OA, Stalla GK (1992) Interleukin-2 and interleukin-2 receptor expression in human corticotrophic adenoma and murine pituitary cell cultures. J Clin Invest 90(5):1944–1951. https://doi.org/10.1172/JCI116072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Denicoff KD, Durkin TM, Lotze MT, Quinlan PE, Davis CL, Listwak SJ et al (1989) The neuroendocrine effects of interleukin-2 treatment. J Clin Endocrinol Metab 69(2):402–410. https://doi.org/10.1210/jcem-69-2-402

    Article  CAS  PubMed  Google Scholar 

  98. Karanth S, McCann SM (1991) Anterior pituitary hormone control by interleukin 2. Proc Natl Acad Sci U S A 88(7):2961–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arzt E, Sauer J, Buric R, Stalla J, Renner U, Stalla GK (1995) Characterization of Interleukin-2 (IL-2) receptor expression and action of IL-2 and IL-6 on normal anterior pituitary cell growth. Endocrine 3(2):113–119. https://doi.org/10.1007/BF02990062

    Article  CAS  PubMed  Google Scholar 

  100. Qiu L, Yang J, Wang H, Zhu Y, Wang Y, Wu Q (2013) Expression of T-helper-associated cytokines in the serum of pituitary adenoma patients preoperatively and postperatively. Med Hypotheses 80(6):781–786. https://doi.org/10.1016/j.mehy.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  101. Qiu L, He D, Fan X, Li Z, Liao C, Zhu Y et al (2011) The expression of interleukin (IL)-17 and IL-17 receptor and MMP-9 in human pituitary adenomas. Pituitary 14(3):266–275. https://doi.org/10.1007/s11102-011-0292-5

    Article  CAS  PubMed  Google Scholar 

  102. Zhu H, Guo J, Shen Y, Dong W, Gao H, Miao Y et al (2018) Functions and mechanisms of tumor necrosis factor-alpha and noncoding RNAs in bone-invasive pituitary adenomas. Clin Cancer Res 24(22):5757–5766. https://doi.org/10.1158/1078-0432.CCR-18-0472

    Article  CAS  PubMed  Google Scholar 

  103. Kim K, Yoshida D, Teramoto A (2005) Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in pituitary adenomas. Endocr Pathol 16(2):115–121

    Article  CAS  PubMed  Google Scholar 

  104. Onofri C, Theodoropoulou M, Losa M, Uhl E, Lange M, Arzt E et al (2006) Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol 191(1):249–261. https://doi.org/10.1677/joe.1.06992

    Article  CAS  PubMed  Google Scholar 

  105. Turner HE, Harris AL, Melmed S, Wass JA (2003) Angiogenesis in endocrine tumors. Endocr Rev 24(5):600–632. https://doi.org/10.1210/er.2002-0008

    Article  CAS  PubMed  Google Scholar 

  106. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161(2):851–858. https://doi.org/10.1016/0006-291x(89)92678-8

    Article  CAS  PubMed  Google Scholar 

  107. Ferrara N, Schweigerer L, Neufeld G, Mitchell R, Gospodarowicz D (1987) Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci USA 84(16):5773–5777. https://doi.org/10.1073/pnas.84.16.5773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ferrara N, Winer J, Henzel WJ (1992) Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: identification as leukemia inhibitory factor. Proc Natl Acad Sci USA 89(2):698–702. https://doi.org/10.1073/pnas.89.2.698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309. https://doi.org/10.1126/science.2479986

    Article  CAS  PubMed  Google Scholar 

  110. Nor JE, Christensen J, Mooney DJ, Polverini PJ (1999) Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 154(2):375–384. https://doi.org/10.1016/S0002-9440(10)65284-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Borg SA, Kerry KE, Royds JA, Battersby RD, Jones TH (2005) Correlation of VEGF production with IL1 alpha and IL6 secretion by human pituitary adenoma cells. Eur J Endocrinol 152(2):293–300. https://doi.org/10.1530/eje.1.01843

    Article  CAS  PubMed  Google Scholar 

  112. Lohrer P, Gloddek J, Hopfner U, Losa M, Uhl E, Pagotto U et al (2001) Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro. Neuroendocrinology 74(2):95–105

    Article  CAS  PubMed  Google Scholar 

  113. McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS et al (2002) Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab 87(9):4238–4244. https://doi.org/10.1210/jc.2002-020309

    Article  CAS  PubMed  Google Scholar 

  114. Komorowski J, Jankewicz J, Stepien H (2000) Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and soluble interleukin-2 receptor (sIL-2R) concentrations in peripheral blood as markers of pituitary tumours. Cytobios 101(398):151–159

    CAS  PubMed  Google Scholar 

  115. Lloyd RV, Scheithauer BW, Kuroki T, Vidal S, Kovacs K, Stefaneanu L (1999) Vascular endothelial growth factor (VEGF) expression in human pituitary adenomas and carcinomas. Endocr Pathol 10(3):229–235

    Article  CAS  PubMed  Google Scholar 

  116. Sanchez-Ortiga R, Sanchez-Tejada L, Moreno-Perez O, Riesgo P, Niveiro M, Pico Alfonso AM (2013) Over-expression of vascular endothelial growth factor in pituitary adenomas is associated with extrasellar growth and recurrence. Pituitary 16(3):370–377. https://doi.org/10.1007/s11102-012-0434-4

    Article  CAS  PubMed  Google Scholar 

  117. Niveiro M, Aranda FI, Peiro G, Alenda C, Pico A (2005) Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum Pathol 36(10):1090–1095. https://doi.org/10.1016/j.humpath.2005.07.015

    Article  CAS  PubMed  Google Scholar 

  118. Sato M, Tamura R, Tamura H, Mase T, Kosugi K, Morimoto Y et al (2019) Analysis of tumor angiogenesis and immune microenvironment in non-functional pituitary endocrine tumors. J Clin Med 8(5):10. https://doi.org/10.3390/jcm8050695

    Article  CAS  Google Scholar 

  119. Arita K, Kurisu K, Tominaga A, Sugiyama K, Eguchi K, Hama S et al (2004) Relationship between intratumoral hemorrhage and overexpression of vascular endothelial growth factor (VEGF) in pituitary adenoma. Hiroshima J Med Sci 53(2):23–27

    CAS  PubMed  Google Scholar 

  120. Gupta P, Dutta P (2018) Landscape of molecular events in pituitary apoplexy. Front Endocrinol (Lausanne) 9:107. https://doi.org/10.3389/fendo.2018.00107

    Article  Google Scholar 

  121. Fukui S, Otani N, Nawashiro H, Yano A, Nomura N, Tokumaru AM et al (2003) The association of the expression of vascular endothelial growth factor with the cystic component and haemorrhage in pituitary adenoma. J Clin Neurosci 10(3):320–324

    Article  CAS  PubMed  Google Scholar 

  122. Yagnik G, Rutowski MJ, Shah SS, Aghi MK (2019) Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes. Oncotarget 10(22):2212–2223. https://doi.org/10.18632/oncotarget.26775

    Article  PubMed  PubMed Central  Google Scholar 

  123. Spoletini M, Taurone S, Tombolini M, Minni A, Altissimi G, Wierzbicki V et al (2017) Trophic and neurotrophic factors in human pituitary adenomas (review). Int J Oncol 51(4):1014–1024. https://doi.org/10.3892/ijo.2017.4120

    Article  CAS  PubMed  Google Scholar 

  124. Renner U, Paez-Pereda M, Arzt E, Stalla GK (2004) Growth factors and cytokines: function and molecular regulation in pituitary adenomas. Front Horm Res 32:96–109

    Article  CAS  PubMed  Google Scholar 

  125. Ezzat S (2001) The role of hormones, growth factors and their receptors in pituitary tumorigenesis. Brain Pathol 11(3):356–370

    Article  CAS  PubMed  Google Scholar 

  126. Ezzat S, Melmed S (1990) The role of growth factors in the pituitary. J Endocrinol Invest 13(8):691–698. https://doi.org/10.1007/BF03349601

    Article  CAS  PubMed  Google Scholar 

  127. Missale C, Fiorentini C, Finardi A, Spano P (1999) Growth factors in pituitary tumors. Pituitary 1(3–4):153–158

    Article  CAS  PubMed  Google Scholar 

  128. Saeger W (2000) Expression of growth factors in normal and neoplastic pituitary tissues. Endocr Pathol 11(4):295–300

    Article  CAS  PubMed  Google Scholar 

  129. Spada A, Lania A (2002) Growth factors and human pituitary adenomas. Mol Cell Endocrinol 197(1–2):63–68. https://doi.org/10.1016/s0303-7207(02)00279-4

    Article  CAS  PubMed  Google Scholar 

  130. Green VL, Atkin SL, Speirs V, Jeffreys RV, Landolt AM, Mathew B et al (1996) Cytokine expression in human anterior pituitary adenomas. Clin Endocrinol (Oxf) 45(2):179–185

    Article  CAS  Google Scholar 

  131. Recouvreux MV, Camilletti MA, Rifkin DB, Diaz-Torga G (2016) The pituitary TGFbeta1 system as a novel target for the treatment of resistant prolactinomas. J Endocrinol 228(3):R73-83. https://doi.org/10.1530/JOE-15-0451

    Article  CAS  PubMed  Google Scholar 

  132. Sarkar DK, Kim KH, Minami S (1992) Transforming growth factor-beta 1 messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Mol Endocrinol 6(11):1825–1833. https://doi.org/10.1210/mend.6.11.1480172

    Article  CAS  PubMed  Google Scholar 

  133. De A, Morgan TE, Speth RC, Boyadjieva N, Sarkar DK (1996) Pituitary lactotrope expresses transforming growth factor beta (TGF beta) type II receptor mRNA and protein and contains 125I-TGF beta 1 binding sites. J Endocrinol 149(1):19–27

    Article  CAS  PubMed  Google Scholar 

  134. Ruebel KH, Leontovich AA, Tanizaki Y, Jin L, Stilling GA, Zhang S et al (2008) Effects of TGFbeta1 on gene expression in the HP75 human pituitary tumor cell line identified by gene expression profiling. Endocrine 33(1):62–76. https://doi.org/10.1007/s12020-008-9060-3

    Article  CAS  PubMed  Google Scholar 

  135. Suteau V, Collin A, Menei P, Rodien P, Rousselet MC, Briet C (2020) Expression of programmed death-ligand 1 (PD-L1) in human pituitary neuroendocrine tumor. Cancer Immunol Immunother 69(10):2053–2061. https://doi.org/10.1007/s00262-020-02611-x

    Article  CAS  PubMed  Google Scholar 

  136. Uraki S, Ariyasu H, Doi A, Takeshima K, Morita S, Inaba H et al (2020) MSH6/2 and PD-L1 expressions are associated with tumor growth and invasiveness in silent pituitary adenoma subtypes. Int J Mol Sci. https://doi.org/10.3390/ijms21082831

    Article  PubMed  PubMed Central  Google Scholar 

  137. Xi Z, Jones PS, Mikamoto M, Jiang X, Faje AT, Nie C et al (2021) The upregulation of molecules related to tumor immune escape in human pituitary adenomas. Front Endocrinol (Lausanne) 12:726448. https://doi.org/10.3389/fendo.2021.726448

    Article  Google Scholar 

  138. Beckers A, Aaltonen LA, Daly AF, Karhu A (2013) Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev 34(2):239–277. https://doi.org/10.1210/er.2012-1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Caimari F, Korbonits M (2016) Novel genetic causes of pituitary adenomas. Clin Cancer Res 22(20):5030–5042. https://doi.org/10.1158/1078-0432.CCR-16-0452

    Article  CAS  PubMed  Google Scholar 

  140. Marques P, Caimari F, Hernandez-Ramirez LC, Collier D, Iacovazzo D, Ronaldson A et al (2020) Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors. J Clin Endocrinol Metab. 105(6):10. https://doi.org/10.1210/clinem/dgaa040

    Article  Google Scholar 

  141. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. https://doi.org/10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  142. Lennard Richard ML, Nowling TK, Brandon D, Watson DK, Zhang XK (2015) Fli-1 controls transcription from the MCP-1 gene promoter, which may provide a novel mechanism for chemokine and cytokine activation. Mol Immunol 63(2):566–573. https://doi.org/10.1016/j.molimm.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  143. Lennard Richard ML, Sato S, Suzuki E, Williams S, Nowling TK, Zhang XK (2014) The Fli-1 transcription factor regulates the expression of CCL5/RANTES. J Immunol 193(6):2661–2668. https://doi.org/10.4049/jimmunol.1302779

    Article  CAS  PubMed  Google Scholar 

  144. Li Y, Luo H, Liu T, Zacksenhaus E, Ben-David Y (2015) The ets transcription factor Fli-1 in development, cancer and disease. Oncogene 34(16):2022–2031. https://doi.org/10.1038/onc.2014.162

    Article  CAS  PubMed  Google Scholar 

  145. Cai F, Hong Y, Xu J, Wu Q, Reis C, Yan W et al (2019) A novel mutation of aryl hydrocarbon receptor interacting protein gene associated with familial isolated pituitary adenoma mediates tumor invasion and growth hormone hypersecretion. World Neurosurg 123:e45–e59. https://doi.org/10.1016/j.wneu.2018.11.021

    Article  PubMed  Google Scholar 

  146. Fukuda T, Tanaka T, Hamaguchi Y, Kawanami T, Nomiyama T, Yanase T (2016) Augmented growth hormone secretion and Stat3 phosphorylation in an aryl hydrocarbon receptor interacting protein (AIP)-disrupted somatotroph cell line. PLoS ONE 11(10):e0164131. https://doi.org/10.1371/journal.pone.0164131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cella M, Colonna M (2015) Aryl hydrocarbon receptor: linking environment to immunity. Semin Immunol 27(5):310–314. https://doi.org/10.1016/j.smim.2015.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nguyen NT, Hanieh H, Nakahama T, Kishimoto T (2013) The roles of aryl hydrocarbon receptor in immune responses. Int Immunol 25(6):335–343. https://doi.org/10.1093/intimm/dxt011

    Article  CAS  PubMed  Google Scholar 

  149. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH (2014) The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 32:403–432. https://doi.org/10.1146/annurev-immunol-032713-120245

    Article  CAS  PubMed  Google Scholar 

  150. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 168(1–2):37–57. https://doi.org/10.1016/j.cell.2016.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou Q, Lavorgna A, Bowman M, Hiscott J, Harhaj EW (2015) Aryl hydrocarbon receptor interacting protein targets IRF7 to suppress antiviral signaling and the induction of type I interferon. J Biol Chem 290(23):14729–14739. https://doi.org/10.1074/jbc.M114.633065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Melmed S (1998) gp130-related cytokines and their receptors in the pituitary. Trends Endocrinol Metab 9(4):155–161. https://doi.org/10.1016/s1043-2760(98)00043-5

    Article  CAS  PubMed  Google Scholar 

  153. Akita S, Webster J, Ren SG, Takino H, Said J, Zand O et al (1995) Human and murine pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion. J Clin Invest 95(3):1288–1298. https://doi.org/10.1172/JCI117779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chesnokova V, Melmed S (2002) Minireview: neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling molecules. Endocrinology 143(5):1571–1574. https://doi.org/10.1210/endo.143.5.8861

    Article  CAS  PubMed  Google Scholar 

  155. Yano H, Readhead C, Nakashima M, Ren SG, Melmed S (1998) Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: neuro-immune-endocrine modulation of pituitary development. Mol Endocrinol 12(11):1708–1720. https://doi.org/10.1210/mend.12.11.0200

    Article  CAS  PubMed  Google Scholar 

  156. Akita S, Readhead C, Stefaneanu L, Fine J, Tampanaru-Sarmesiu A, Kovacs K et al (1997) Pituitary-directed leukemia inhibitory factor transgene forms Rathke’s cleft cysts and impairs adult pituitary function. A model for human pituitary Rathke’s cysts. J Clin Invest. 99(10):2462–2469. https://doi.org/10.1172/JCI119430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yang Q, Wang Y, Zhang S, Tang J, Li F, Yin J et al (2019) Biomarker discovery for immunotherapy of pituitary adenomas: enhanced robustness and prediction ability by modern computational tools. Int J Mol Sci. https://doi.org/10.3390/ijms20010151

    Article  PubMed  PubMed Central  Google Scholar 

  158. Guo J, Fang Q, Liu Y, Xie W, Li C, Zhang Y (2021) Screening and identification of key microenvironment-related genes in non-functioning pituitary adenoma. Front Genet 12:627117. https://doi.org/10.3389/fgene.2021.627117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Richardson TE, Shen ZJ, Kanchwala M, Xing C, Filatenkov A, Shang P et al (2017) Aggressive behavior in silent subtype III pituitary adenomas may depend on suppression of local immune response: a whole transcriptome analysis. J Neuropathol Exp Neurol 76(10):874–882. https://doi.org/10.1093/jnen/nlx072

    Article  CAS  PubMed  Google Scholar 

  160. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112(11):1603–1618. https://doi.org/10.1172/JCI20401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  162. Le Bitoux MA, Stamenkovic I (2008) Tumor-host interactions: the role of inflammation. Histochem Cell Biol 130(6):1079–1090. https://doi.org/10.1007/s00418-008-0527-3

    Article  CAS  PubMed  Google Scholar 

  163. Uppaluri R, Dunn GP, Lewis JS Jr (2008) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in head and neck cancers. Cancer Immun 8:16

    PubMed  PubMed Central  Google Scholar 

  164. Barbieri F, Bajetto A, Stumm R, Pattarozzi A, Porcile C, Zona G et al (2008) Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 14(16):5022–5032. https://doi.org/10.1158/1078-0432.CCR-07-4717

    Article  CAS  PubMed  Google Scholar 

  165. Vidal S, Kovacs K, Horvath E, Scheithauer BW, Kuroki T, Lloyd RV (2001) Microvessel density in pituitary adenomas and carcinomas. Virchows Arch 438(6):595–602. https://doi.org/10.1007/s004280000373

    Article  CAS  PubMed  Google Scholar 

  166. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401. https://doi.org/10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  167. Cristina C, Luque GM, Demarchi G, Lopez Vicchi F, Zubeldia-Brenner L, Perez Millan MI et al (2014) Angiogenesis in pituitary adenomas: human studies and new mutant mouse models. Int J Endocrinol 2014:608497. https://doi.org/10.1155/2014/608497

    Article  PubMed  PubMed Central  Google Scholar 

  168. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jugenburg M, Kovacs K, Stefaneanu L, Scheithauer BW (1995) Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas: a quantitative morphologic study. Endocr Pathol 6(2):115–124

    Article  PubMed  Google Scholar 

  170. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA (2000) Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab 85(3):1159–1162. https://doi.org/10.1210/jcem.85.3.6485

    Article  CAS  PubMed  Google Scholar 

  171. Vidal S, Scheithauer BW, Kovacs K (2000) Vascularity in nontumorous human pituitaries and incidental microadenomas: a morphometric study. Endocr Pathol 11(3):215–227

    Article  PubMed  Google Scholar 

  172. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Dorward N et al (2020) The role of the tumour microenvironment in the angiogenesis of pituitary tumours. Endocrine 70(3):593–606. https://doi.org/10.1007/s12020-020-02478-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Turner HE, Nagy Z, Gatter KC, Esiri MM, Wass JA, Harris AL (2000) Proliferation, bcl-2 expression and angiogenesis in pituitary adenomas: relationship to tumour behaviour. Br J Cancer 82(8):1441–1445. https://doi.org/10.1054/bjoc.1999.1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Stefaneanu L, Kovacs K, Scheithauer BW, Kontogeorgos G, Riehle DL, Sebo TJ et al (2000) Effect of dopamine agonists on lactotroph adenomas of the human pituitary. Endocr Pathol 11(4):341–352

    Article  CAS  PubMed  Google Scholar 

  175. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA (2000) Angiogenesis in pituitary adenomas - relationship to endocrine function, treatment and outcome. J Endocrinol 165(2):475–481

    Article  CAS  PubMed  Google Scholar 

  176. Lees PD, Pickard JD (1987) Hyperprolactinemia, intrasellar pituitary tissue pressure, and the pituitary stalk compression syndrome. J Neurosurg 67(2):192–196. https://doi.org/10.3171/jns.1987.67.2.0192

    Article  CAS  PubMed  Google Scholar 

  177. Farnoud MR, Lissak B, Kujas M, Peillon F, Racadot J, Li JY (1992) Specific alterations of the basement membrane and stroma antigens in human pituitary tumours in comparison with the normal anterior pituitary. An immunocytochemical study. Virchows Arch A Pathol Anat Histopathol. 421(6):449–455

    Article  CAS  PubMed  Google Scholar 

  178. Schechter J (1972) Ultrastructural changes in the capillary bed of human pituitary tumors. Am J Pathol 67(1):109–126

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Elias KA, Weiner RI (1984) Direct arterial vascularization of estrogen-induced prolactin-secreting anterior pituitary tumors. Proc Natl Acad Sci U S A 81(14):4549–4553. https://doi.org/10.1073/pnas.81.14.4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Monnet F, Elias KA, Fagin K, Neill A, Goldsmith P, Weiner RI (1984) Formation of a direct arterial blood supply to the anterior pituitary gland following complete or partial interruption of the hypophyseal portal vessels. Neuroendocrinology 39(3):251–255. https://doi.org/10.1159/000123987

    Article  CAS  PubMed  Google Scholar 

  181. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13(2):97–110. https://doi.org/10.1038/nrc3447

    Article  CAS  PubMed  Google Scholar 

  182. De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G (2005) The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65(14):6237–6244. https://doi.org/10.1158/0008-5472.CAN-04-3545

    Article  PubMed  Google Scholar 

  183. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. https://doi.org/10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  184. Brittain AL, Basu R, Qian Y, Kopchick JJ (2017) Growth hormone and the epithelial-to-mesenchymal transition. J Clin Endocrinol Metab 102(10):3662–3673. https://doi.org/10.1210/jc.2017-01000

    Article  PubMed  Google Scholar 

  185. Fougner SL, Borota OC, Berg JP, Hald JK, Ramm-Pettersen J, Bollerslev J (2008) The clinical response to somatostatin analogues in acromegaly correlates to the somatostatin receptor subtype 2a protein expression of the adenoma. Clin Endocrinol (Oxf) 68(3):458–465. https://doi.org/10.1111/j.1365-2265.2007.03065.x

    Article  CAS  Google Scholar 

  186. Lekva T, Berg JP, Fougner SL, Olstad OK, Ueland T, Bollerslev J (2012) Gene expression profiling identifies ESRP1 as a potential regulator of epithelial mesenchymal transition in somatotroph adenomas from a large cohort of patients with acromegaly. J Clin Endocrinol Metab 97(8):E1506–E1514. https://doi.org/10.1210/jc.2012-1760

    Article  CAS  PubMed  Google Scholar 

  187. Venegas-Moreno E, Flores-Martinez A, Dios E, Vazquez-Borrego MC, Ibanez-Costa A, Madrazo-Atutxa A et al (2019) E-cadherin expression is associated with somatostatin analogue response in acromegaly. J Cell Mol Med 23(5):3088–3096. https://doi.org/10.1111/jcmm.13851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Neou M, Villa C, Armignacco R, Jouinot A, Raffin-Sanson ML, Septier A et al (2020) Pangenomic classification of pituitary neuroendocrine tumors. Cancer Cell 37(1):123–134. https://doi.org/10.1016/j.ccell.2019.11.002

    Article  CAS  PubMed  Google Scholar 

  189. Zhou W, Song Y, Xu H, Zhou K, Zhang W, Chen J et al (2011) In nonfunctional pituitary adenomas, estrogen receptors and slug contribute to development of invasiveness. J Clin Endocrinol Metab 96(8):E1237–E1245. https://doi.org/10.1210/jc.2010-3040

    Article  CAS  PubMed  Google Scholar 

  190. Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Grieve J et al (2021) The expression of neural cell adhesion molecule and the microenvironment of pituitary neuroendocrine tumours. J Neuroendocrinol. https://doi.org/10.1111/jne.13052

    Article  PubMed  Google Scholar 

  191. Lin AL, Jonsson P, Tabar V, Yang TJ, Cuaron J, Beal K et al (2018) Marked response of a hypermutated ACTH-secreting pituitary carcinoma to ipilimumab and nivolumab. J Clin Endocrinol Metab 103(10):3925–3930. https://doi.org/10.1210/jc.2018-01347

    Article  PubMed  PubMed Central  Google Scholar 

  192. Caccese M, Barbot M, Ceccato F, Padovan M, Gardiman MP, Fassan M et al (2020) Rapid disease progression in patient with mismatch-repair deficiency pituitary ACTH-secreting adenoma treated with checkpoint inhibitor pembrolizumab. Anticancer Drugs 31(2):199–204. https://doi.org/10.1097/CAD.0000000000000856

    Article  CAS  PubMed  Google Scholar 

  193. Duhamel C, Ilie MD, Salle H, Nassouri AS, Gaillard S, Deluche E et al (2020) Immunotherapy in corticotroph and lactotroph aggressive tumors and carcinomas: two case reports and a review of the literature. J Pers Med 10(3):10. https://doi.org/10.3390/jpm10030088

    Article  Google Scholar 

  194. Majd N, Waguespack SG, Janku F, Fu S, Penas-Prado M, Xu M et al (2020) Efficacy of pembrolizumab in patients with pituitary carcinoma: report of four cases from a phase II study. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-001532

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sol B, de Filette JMK, Awada G, Raeymaeckers S, Aspeslagh S, Andreescu CE et al (2021) Immune checkpoint inhibitor therapy for ACTH-secreting pituitary carcinoma: a new emerging treatment? Eur J Endocrinol 184(1):K1–K5. https://doi.org/10.1530/EJE-20-0151

    Article  CAS  PubMed  Google Scholar 

  196. Dutta P, Reddy KS, Rai A, Madugundu AK, Solanki HS, Bhansali A et al (2019) Surgery, octreotide, temozolomide, bevacizumab, radiotherapy, and pegvisomant treatment of an AIP mutationpositive child. J Clin Endocrinol Metab 104(8):3539–3544. https://doi.org/10.1210/jc.2019-00432

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gupta P, Rai A, Mukherjee KK, Sachdeva N, Radotra BD, Punia RPS et al (2018) Imatinib inhibits GH secretion from somatotropinomas. Front Endocrinol (Lausanne) 9:453. https://doi.org/10.3389/fendo.2018.00453

    Article  Google Scholar 

  198. Kim JM, Lee YH, Ku CR, Lee EJ (2011) The cyclic pentapeptide d-Arg3FC131, a CXCR4 antagonist, induces apoptosis of somatotrope tumor and inhibits tumor growth in nude mice. Endocrinology 152(2):536–544. https://doi.org/10.1210/en.2010-0642

    Article  CAS  PubMed  Google Scholar 

  199. Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D et al (2013) A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol 71(4):1041–1050. https://doi.org/10.1007/s00280-013-2099-8

    Article  CAS  PubMed  Google Scholar 

  200. Bilusic M, Heery CR, Collins JM, Donahue RN, Palena C, Madan RA et al (2019) Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immunother Cancer 7(1):240. https://doi.org/10.1186/s40425-019-0706-x

    Article  PubMed  PubMed Central  Google Scholar 

  201. Han C, Lin S, Lu X, Xue L, Wu ZB (2021) Tumor-associated macrophages: new horizons for pituitary adenoma researches. Front Endocrinol (Lausanne) 12:785050. https://doi.org/10.3389/fendo.2021.785050

    Article  Google Scholar 

  202. Voellger B, Zhang Z, Benzel J, Wang J, Lei T, Nimsky C et al (2021) Targeting aggressive pituitary adenomas at the molecular level-a review. J Clin Med 11(1):10. https://doi.org/10.3390/jcm11010124

    Article  CAS  Google Scholar 

  203. Ibanez-Costa A, Korbonits M (2017) AIP and the somatostatin system in pituitary tumours. J Endocrinol 235(3):R101–R116. https://doi.org/10.1530/JOE-17-0254

    Article  CAS  PubMed  Google Scholar 

  204. Duluc C, Moatassim-Billah S, Chalabi-Dchar M, Perraud A, Samain R, Breibach F et al (2015) Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol Med 7(6):735–753. https://doi.org/10.15252/emmm.201404346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Andoh A, Hata K, Shimada M, Fujino S, Tasaki K, Bamba S et al (2002) Inhibitory effects of somatostatin on tumor necrosis factor-alpha-induced interleukin-6 secretion in human pancreatic periacinar myofibroblasts. Int J Mol Med 10(1):89–93

    CAS  PubMed  Google Scholar 

  206. Grimaldi M, Florio T, Schettini G (1997) Somatostatin inhibits interleukin 6 release from rat cortical type I astrocytes via the inhibition of adenylyl cyclase. Biochem Biophys Res Commun 235(1):242–248. https://doi.org/10.1006/bbrc.1997.6513

    Article  CAS  PubMed  Google Scholar 

  207. Spangelo BL, Horrell S, Goodwin AL, Shroff S, Jarvis WD (2004) Somatostatin and gamma-aminobutyric acid inhibit interleukin-1 beta-stimulated release of interleukin-6 from rat C6 glioma cells. NeuroImmunoModulation 11(5):332–340. https://doi.org/10.1159/000079414

    Article  CAS  PubMed  Google Scholar 

  208. Zatelli MC, Piccin D, Vignali C, Tagliati F, Ambrosio MR, Bondanelli M et al (2007) Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr Relat Cancer 14(1):91–102. https://doi.org/10.1677/ERC-06-0026

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

P.M. is supported by the Neuroendocrine Tumor Research Foundation (NETRF).

Author information

Authors and Affiliations

Authors

Contributions

PM, ALS, DL-P, CF and MJB contributed for the literature search, data analysis, as well as for writing the manuscript and revising the final work.

Corresponding author

Correspondence to Pedro Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

No experimental activity has been performed either in humans or animals. We have only performed a review of the current literature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, P., Silva, A.L., López-Presa, D. et al. The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications. Pituitary 25, 363–382 (2022). https://doi.org/10.1007/s11102-022-01211-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-022-01211-5

Keywords

Navigation