Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Photosynthetica
  3. Article
Comparative studies of compatible and incompatible pepper–Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Symptoms of piper yellow mottle virus in black pepper as influenced by temperature and relative humidity

12 April 2021

V. Ahamedemujtaba, P. V. Atheena, … V. Srinivasan

Elicitors and biostimulants in the production of tomato infected with Tomato brown rugose fruit virus

10 December 2022

Luis Enrique Ortiz-Martínez & Daniel Leobardo Ochoa-Martínez

Pepper-acquired resistance induced by salicylic acid against Chilli Veinal Mottle Virus

17 September 2022

Suveditha Subhash, Gouribidanur Ashwathappa Geetha, … M. Krishna Reddy

Evaluation of biochemical responses in pepper genotypes inoculated with Pepper leaf curl virus

27 August 2022

Neeraj Dwivedi, Leena Johny, … Dipti S. Tirkey

Interaction between ‘Candidatus Phytoplasma australasiae’ and Tomato yellow leaf curl virus in tomato plants

17 September 2020

Nazanin Ebadi, Gilda Najafipour, … Mohammad Salehi

Photosynthetic properties and biochemical metabolism of Cucurbita moschata genotypes following infection with powdery mildew

18 June 2020

Bi-Hua Chen, Wei-Li Guo, … Xin-Zheng Li

Physiological and histopathological assessments of the susceptibility of different tomato (Solanum lycopersicum) cultivars to early blight disease

24 March 2021

Nashwa M. A. Sallam, Heba-Alla S. AbdElfatah, … Hadeel M. M. Khalil Bagy

Grapevine leafroll disease alters leaf physiology but has little effect on plant cold hardiness

09 August 2018

Matthew M. Halldorson & Markus Keller

Application of maximum quantum yield, a parameter of chlorophyll fluorescence, for early determination of bacterial wilt in tomato seedlings

11 October 2019

Ji Hyeon Kim, Shiva Ram Bhandari, … Jun Gu Lee

Download PDF
  • Open Access
  • Published: 08 April 2017

Comparative studies of compatible and incompatible pepper–Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide

  • A. Janeczko1,
  • M. Dziurka1,
  • G. Gullner2,
  • M. Kocurek3,
  • M. Rys1,
  • D. Saja1,
  • A. Skoczowski1,
  • I. Tóbiás2,
  • A. Kornas4 &
  • …
  • B. Barna2 

Photosynthetica volume 56, pages 763–775 (2018)Cite this article

  • 770 Accesses

  • 4 Citations

  • Metrics details

Abstract

The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Abbreviations

BR:

brassinosteroid

Chl:

chlorophyll

dpi:

days after inoculation

ETC:

electron transport chain

hpi:

hours after inoculation

ObPV:

Obuda pepper virus

PMMoV:

Pepper mild mottle virus

PRI:

physiological reflectance index

RC:

reaction center

ROS:

reactive oxygen species

RWC:

relative water content

SIPI:

structure insensitive pigment index

UDP:

uracildiphosphate glucose

WBI:

water band index

24-epi-BR:

24-epibrassinolide

References

  • Almási A., Harsányi A., Gáborjányi R.: Photosynthetic alterations of virus infected plants.–Acta Phytopathol. Hun. 36: 15–29, 2001.

    Article  Google Scholar 

  • Balachandran S., Osmond C.B., Makino A.: Effects of two strains of tobacco mosaic virus on photosynthetic characteristics and nitrogen partitioning in leaves of Nicotiana tabacum cv Xanthi during photoacclimation under two nitrogen nutrition regimes.–Plant Physiol. 104: 1043–1050, 1994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baron M., Rahoutei J., Lazaro J. et al.: Photosystem II response to biotic and abiotic stress.–In: Mathis P. (ed.): Photosynthesis from Light to Biosphere. Pp. 897–901. Kluwer Academic Publishers, The Hague 1995.

    Google Scholar 

  • Critchley J.H., Zeeman S.C., Takaha T. et al.: A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis.–Plant J. 26: 89–100, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Dobrikova A.G., Vladkova R.S., Rashkov G.D. et al.: Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions.–Plant Physiol. Bioch. 80: 75–82, 2014.

    Article  CAS  Google Scholar 

  • Demmig-Adams B., Adams W.W. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.–Trends Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  • Elbein A.D., Pan Y.T., Pastuszak I. et al.: New insights on trehalose: a multifunctional molecule.–Glycobiology 13: 17R-27R, 2003.

  • El Sayed A.I., Rafudeen M.S., Golldack D.: Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress.–Plant Biol. 16: 1–8, 2014.

    Google Scholar 

  • Filella I., Amaro T., Araus J.L. et al.: Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI).–Physiol. Plantarum 96: 211–216, 1996.

    Article  CAS  Google Scholar 

  • Funayama S., Sonoike K., Terashima I.: Photosynthetic properties of leaves of Eupatorium makinoi infected by a geminivirus.–Photosynth. Res. 52: 253–261, 1997.

    Article  Google Scholar 

  • Gamon J.A., Peñuelas J., Field C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.–Remote Sens. Environ. 41: 35–44, 1992.

    Article  Google Scholar 

  • Gamon J.A., Serrano L., Surfus J.: The photochemical reflectance index: an optical indicator of photosynthetic radiation-use efficiency across species, functional types and nutrient levels.–Oecologia 112: 492–501, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation.–Biochim. Biophys. Acta 1817: 1490–1498, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves M. C., Vega J., Oliveira J.G. et al.: Sugarcane yellow leaf virus infection leads to alterations in photosynthetic efficiency and carbohydrate accumulation in sugarcane leaves.–Fitopatol. Bras. 30: 10–16, 2005.

    Article  Google Scholar 

  • Gómez-Ariza J., Campo S., Rufat M. et al.: Sucrose-mediated priming of plant defence responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants.–Mol. Plant Microbe In. 20: 832–842, 2007.

    Article  CAS  Google Scholar 

  • Grunwald C.: Sterol molecular modifications influencing membrane permeability.–Plant Physiol. 54: 624–628, 1974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Y.P., Zhou H.F., Zeng G.H. et al.: [Effects of high temperature stress on photosynthetic rate and photosystem II activity in citrus.]–Chin. J. Appl. Ecol. 14: 867–870, 2003. [In Chinese]

    CAS  Google Scholar 

  • Gururani M. A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.–Mol. Plant 8: 1304–1320, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Hendry G.A.F. Evolutionary origins and natural functions of fructans–a climatological, biogeographic and mechanistic appraisal.–New Phytol. 123: 3–14, 1993.

    Article  CAS  Google Scholar 

  • Herbers K., Meuwly P., Métraux J.P.: Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage.–FEBS Lett. 397: 239–244, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Herbers K., Sonnewald U.: Altered gene expression brought about by inter-and intracellularly formed hexoses and its possible implications for plant-pathogen interactions.–J. Plant Res. 111: 323–328, 1998.

    Article  CAS  Google Scholar 

  • Herbers K., Takahata Y., Melzer M. et al.: Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco.–Mol. Plant Pathol. 1: 51–59, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Holá D.: Brassinosteroids and photosynthesis.–In: Hayat S., Ahmad A. (ed.): Brassinosteroids: a Class of Plant Hormone. Pp. 143–192. Springer, Dordrecht, Heidelberg, New York 2011.

    Chapter  Google Scholar 

  • Janeczko A., Koscielniak J., Pilipowicz M. et al.: Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress.–Photosynthetica 43: 293–298, 2005.

    Article  CAS  Google Scholar 

  • Janeczko A., Biesaga-Koscielniak J., Okleštková J. et al.: Role of 24-epibrassinolide in wheat production: physiological effects and uptake.–J. Agron. Crop Sci. 196: 311–321, 2010.

    CAS  Google Scholar 

  • Janeczko A., Okleštková J., Pociecha E. et al.: Physiological effects and transport of 24-epibrassinolide in heat-stressed barley.–Acta Physiol. Plant. 33: 1249–1259, 2011.

    Article  CAS  Google Scholar 

  • Janeczko A., Gruszka D., Pociecha E. et al.: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis.–Plant Physiol. Bioch. 99: 126–141, 2016.

    Article  CAS  Google Scholar 

  • Juhász C., Tóbiás I., Ádám A.L. et al.: Pepper 9-and 13-lipoxygenase genes are differentially activated by two tobamoviruses and by hormone treatments.–Physiol. Mol. Plant P. 92: 59–69, 2015.

    Article  CAS  Google Scholar 

  • Kaplan F., Guy C.L.: Beta-Amylase induction and the protective role of maltose during temperature shock.–Plant Physiol. 135: 1674–1684, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knipling E.B.: Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.–Remote Sens. Environ. 1: 155–159, 1970.

    Article  Google Scholar 

  • Koch K.E.: Carbohydrate-modulated gene expression in plants.–Annu. Rev. Plant Phys. 47: 509–540, 1996.

    Article  CAS  Google Scholar 

  • Krezhova D., Dikova B., Maneva S.: Ground based hyperspectral remote sensing for disease detection of tobacco plants.–Bulg. J. Agric. Sci. 20: 1142–1150, 2014.

    Google Scholar 

  • Livingston D.P. III, Henson C.A.: Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening.–Plant Physiol. 116: 403–408, 1998.

    Article  PubMed Central  CAS  Google Scholar 

  • Livingston D.P. III, Hincha D.K., Heyer A.G.: Fructan and its relationship to abiotic stress tolerance in plants.–Cell. Mol. Life Sci. 66: 2007–2023, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucas W.J., Olesinski A., Hull R.J. et al.: Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants.–Planta 190: 88–96, 1993.

    Article  CAS  Google Scholar 

  • Moghaddam B.M.R, van den Ende W.: Sugars and plant innate immunity.–J. Exp. Bot. 63: 3989–3998, 2012.

    Article  CAS  Google Scholar 

  • Müller J., Aeschbacher R.A., Sprenger N. et al.: Disaccharidemediated regulation of sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves.–Plant Physiol. 123: 265–274, 2000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.–Photosynth. Res. 94: 275–290, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Peñuelas J., Filella I., Biel C. et al.: The reflectance at the 950-970 nm region as an indicator of plant water status.–Int. J. Remote Sens. 14: 1887–1905, 1993.

    Article  Google Scholar 

  • Peñuelas J., Gamon J.A., Fredeen A.L. et al.: Reflectance indices associated with physiological changes in nitrogen-and waterlimited sunflower leaves.–Remote Sens. Environ. 48: 135–146, 1994.

    Article  Google Scholar 

  • Peñuelas J., Filella I., Baret F.: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectra reflectance.–Photosynthetica 31: 221–230, 1995a.

    Google Scholar 

  • Peñuelas J., Filella I., Gamon J.A.: Assessment of photosynthetic radiation-use efficiency with spectral reflectance.–New Physiol. 131: 291–296, 1995b.

    Article  Google Scholar 

  • Peñuelas J., Isla R., Filella I. et al.: Visible and near-infrared reflectance assessment of salinity effects on barley.–Crop Sci. 37: 198–202, 1997.

    Article  Google Scholar 

  • Pérez-Bueno M.L., Rahoutei J., Sajnani C. et al.: Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses.–Proteomics 4: 418–425, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rahoutei J., Barón M., García-Luque I. et al.: Effect of tobamovirus infection on thermoluminescence characteristics of chloroplasts from infected plants.–Z. Naturforsch. C 54: 634–639, 1999.

    Article  CAS  Google Scholar 

  • Rahoutei J., García-Luque I., Barón M.: Inhibition of photosynthesis by viral infection: effect on PSII structure and function.–Physiol. Plantarum 110: 286–292, 2000.

    Article  CAS  Google Scholar 

  • Roitsch T., Balibrea M.E., Hofmann M. et al.: Extracellular invertase: key metabolic enzyme and PR protein.–J. Exp. Bot. 54: 513–524, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rolland F., Baena-Gonzalez E., Sheen J.: Sugar sensing and signaling in plants: conserved and novel mechanisms.–Annu. Rev. Plant Biol. 57: 675–709, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Rys M., Juhász C., Surowka E. et al.: Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy.–Plant Physiol. Bioch. 83: 267–278, 2014.

    Article  CAS  Google Scholar 

  • Ryšlavá H., Müller K., Semorádová S. et al.: Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y.–Photosynthetica 41: 357–363, 2003.

    Article  Google Scholar 

  • Shalitin D., Wolf S.: Cucumber mosaic virus infection affects sugar transport in melon plants.–Plant Physiol. 123: 597–604, 2000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skoczowski A., Janeczko A., Gullner G. et al.: Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescens.–J. Therm. Anal. Calorim. 104: 131–139, 2011.

    Article  CAS  Google Scholar 

  • Smeekens S., Ma J., Hanson J. et al.: Sugar signals and molecular networks controlling plant growth.–Curr. Opin. Plant Biol. 13: 274–279, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Solovchenko A.: Quantification of screening pigments and their efficiency in situ.–In: Solovchenko A. (ed.): Photoprotection in Plants. Pp. 119–141. Springer Series in Biophysics 14, Springer-Verlag, Berlin, Heidelberg 2010.

    Chapter  Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetics samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis.–Biochim. Biophys. Acta 1797: 1313–1326, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Tauzin A.S., Giardina T.: Sucrose and invertases, a part of the plant defense response to the biotic stresses.–Front. Plant Sci. 5: 293, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tóbiás I., Fraser R.S.S., Gerwitz A.: The gene-for-gene relationship between Capsicum annuum L. and tobacco mosaic virus: effects on virus multiplication, ethylene synthesis and accumulation of pathogenesis-related proteins.–Physiol. Mol. Plant Pathol. 35: 271–286, 1989.

    Article  Google Scholar 

  • Velasco L., Janssen D., Ruiz-Garcia L. et al.: The complete nucleotide sequence and development of a diferential detection assay for a pepper mild mottle virus (PMMoV) isolate that overcomes L 3 resistance in pepper.–J. Virol. Methods 106: 135–140, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Y.: Brassinosteroids modulate plant immunity at multiple levels.–P. Natl. Acad. Sci. USA 109: 7–8, 2012.

    Article  Google Scholar 

  • Yuan L., Shu S., Sun J. et al.: Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress.–Photosynth. Res. 112: 205–214, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Yusuf M., Fariduddin Q., Ahmad I. et al.: Brassinosteroidmediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel.–Physiol. Mol. Biol. Plants 20: 449–460, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland

    A. Janeczko, M. Dziurka, M. Rys, D. Saja & A. Skoczowski

  2. Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022, Budapest, Hungary

    G. Gullner, I. Tóbiás & B. Barna

  3. Institute of Biology, The Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland

    M. Kocurek

  4. Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland

    A. Kornas

Authors
  1. A. Janeczko
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. M. Dziurka
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. G. Gullner
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. M. Kocurek
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. M. Rys
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. D. Saja
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. A. Skoczowski
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. I. Tóbiás
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. A. Kornas
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. B. Barna
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Janeczko.

Additional information

Acknowledgment: We thank Dr. Lajos Zatykó (Research Institute of Vegetable Crops, Budatétény, Hungary) for kindly providing the pepper seeds. The experiments were conducted within a bilateral cooperation project between the Polish and Hungarian Academy of Sciences during 2013–2016. The financial support of the Hungarian Scientific Research Fund (OTKA K83615) is gratefully acknowledged.

This article is published with open access at link.springer.com

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janeczko, A., Dziurka, M., Gullner, G. et al. Comparative studies of compatible and incompatible pepper–Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide. Photosynthetica 56, 763–775 (2018). https://doi.org/10.1007/s11099-017-0725-0

Download citation

  • Received: 01 August 2016

  • Accepted: 20 February 2017

  • Published: 08 April 2017

  • Issue Date: September 2018

  • DOI: https://doi.org/10.1007/s11099-017-0725-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Additional key words

  • brassinosteroids
  • CO2 assimilation
  • systemic virus response
  • water band index
  • xanthophyll cycle
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.