Comparative studies of compatible and incompatible pepper–Tobamovirus interactions and the evaluation of effects of 24-epibrassinolide

  • A. Janeczko
  • M. Dziurka
  • G. Gullner
  • M. Kocurek
  • M. Rys
  • D. Saja
  • A. Skoczowski
  • I. Tóbiás
  • A. Kornas
  • B. Barna
Open Access
Article
  • 223 Downloads

Abstract

The aim of study was to gain a deeper knowledge about local and systemic changes in photosynthetic processes and sugar production of pepper infected by Obuda pepper virus (ObPV) and Pepper mild mottle virus (PMMoV). PSII efficiency, reflectance, and gas exchange were measured 48 and/or 72 h after inoculation (hpi). Sugar accumulation was checked 72 hpi and 20 d after inoculation (as a systemic response). Inoculation of leaves with ObPV led to appearance of hypersensitive necrotic lesions (incompatible interaction), while PMMoV caused no visible symptoms (compatible interaction). ObPV (but not PMMoV) lowered Fv/Fm (from 0.827 to 0.148 at 72 hpi). Net photosynthesis decreased in ObPV-infected leaves. In ObPV-inoculated leaves, the accumulation of glucose, fructose, and glucose-6-phosphate was accompanied with lowered sucrose, maltoheptose, nystose, and trehalose contents. PMMoV inoculation increased the contents of glucose, maltose, and raffinose in the inoculated leaves, while glucose-6-phosphate accummulated in upper leaves.

Additional key words

brassinosteroids CO2 assimilation systemic virus response water band index xanthophyll cycle 

Abbreviations

BR

brassinosteroid

Chl

chlorophyll

dpi

days after inoculation

ETC

electron transport chain

hpi

hours after inoculation

ObPV

Obuda pepper virus

PMMoV

Pepper mild mottle virus

PRI

physiological reflectance index

RC

reaction center

ROS

reactive oxygen species

RWC

relative water content

SIPI

structure insensitive pigment index

UDP

uracildiphosphate glucose

WBI

water band index

24-epi-BR

24-epibrassinolide

Notes

Acknowledgments

We thank Dr. Lajos Zatykó (Research Institute of Vegetable Crops, Budatétény, Hungary) for kindly providing the pepper seeds. The experiments were conducted within a bilateral cooperation project between the Polish and Hungarian Academy of Sciences during 2013–2016. The financial support of the Hungarian Scientific Research Fund (OTKA K83615) is gratefully acknowledged.

References

  1. Almási A., Harsányi A., Gáborjányi R.: Photosynthetic alterations of virus infected plants.–Acta Phytopathol. Hun. 36: 15–29, 2001.CrossRefGoogle Scholar
  2. Balachandran S., Osmond C.B., Makino A.: Effects of two strains of tobacco mosaic virus on photosynthetic characteristics and nitrogen partitioning in leaves of Nicotiana tabacum cv Xanthi during photoacclimation under two nitrogen nutrition regimes.–Plant Physiol. 104: 1043–1050, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baron M., Rahoutei J., Lazaro J. et al.: Photosystem II response to biotic and abiotic stress.–In: Mathis P. (ed.): Photosynthesis from Light to Biosphere. Pp. 897–901. Kluwer Academic Publishers, The Hague 1995.Google Scholar
  4. Critchley J.H., Zeeman S.C., Takaha T. et al.: A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis.–Plant J. 26: 89–100, 2001.CrossRefPubMedGoogle Scholar
  5. Dobrikova A.G., Vladkova R.S., Rashkov G.D. et al.: Effects of exogenous 24-epibrassinolide on the photosynthetic membranes under non-stress conditions.–Plant Physiol. Bioch. 80: 75–82, 2014.CrossRefGoogle Scholar
  6. Demmig-Adams B., Adams W.W. III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis.–Trends Plant Sci. 1: 21–26, 1996.CrossRefGoogle Scholar
  7. Elbein A.D., Pan Y.T., Pastuszak I. et al.: New insights on trehalose: a multifunctional molecule.–Glycobiology 13: 17R-27R, 2003.Google Scholar
  8. El Sayed A.I., Rafudeen M.S., Golldack D.: Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress.–Plant Biol. 16: 1–8, 2014.Google Scholar
  9. Filella I., Amaro T., Araus J.L. et al.: Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI).–Physiol. Plantarum 96: 211–216, 1996.CrossRefGoogle Scholar
  10. Funayama S., Sonoike K., Terashima I.: Photosynthetic properties of leaves of Eupatorium makinoi infected by a geminivirus.–Photosynth. Res. 52: 253–261, 1997.CrossRefGoogle Scholar
  11. Gamon J.A., Peñuelas J., Field C.B.: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency.–Remote Sens. Environ. 41: 35–44, 1992.CrossRefGoogle Scholar
  12. Gamon J.A., Serrano L., Surfus J.: The photochemical reflectance index: an optical indicator of photosynthetic radiation-use efficiency across species, functional types and nutrient levels.–Oecologia 112: 492–501, 1997.CrossRefPubMedGoogle Scholar
  13. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation.–Biochim. Biophys. Acta 1817: 1490–1498, 2012.CrossRefPubMedGoogle Scholar
  14. Gonçalves M. C., Vega J., Oliveira J.G. et al.: Sugarcane yellow leaf virus infection leads to alterations in photosynthetic efficiency and carbohydrate accumulation in sugarcane leaves.–Fitopatol. Bras. 30: 10–16, 2005.Google Scholar
  15. Gómez-Ariza J., Campo S., Rufat M. et al.: Sucrose-mediated priming of plant defence responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants.–Mol. Plant Microbe In. 20: 832–842, 2007.CrossRefGoogle Scholar
  16. Grunwald C.: Sterol molecular modifications influencing membrane permeability.–Plant Physiol. 54: 624–628, 1974.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo Y.P., Zhou H.F., Zeng G.H. et al.: [Effects of high temperature stress on photosynthetic rate and photosystem II activity in citrus.]–Chin. J. Appl. Ecol. 14: 867–870, 2003. [In Chinese]Google Scholar
  18. Gururani M. A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.–Mol. Plant 8: 1304–1320, 2015.CrossRefPubMedGoogle Scholar
  19. Hendry G.A.F. Evolutionary origins and natural functions of fructans–a climatological, biogeographic and mechanistic appraisal.–New Phytol. 123: 3–14, 1993.CrossRefGoogle Scholar
  20. Herbers K., Meuwly P., Métraux J.P.: Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage.–FEBS Lett. 397: 239–244, 1996.CrossRefPubMedGoogle Scholar
  21. Herbers K., Sonnewald U.: Altered gene expression brought about by inter-and intracellularly formed hexoses and its possible implications for plant-pathogen interactions.–J. Plant Res. 111: 323–328, 1998.CrossRefGoogle Scholar
  22. Herbers K., Takahata Y., Melzer M. et al.: Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco.–Mol. Plant Pathol. 1: 51–59, 2000.CrossRefPubMedGoogle Scholar
  23. Holá D.: Brassinosteroids and photosynthesis.–In: Hayat S., Ahmad A. (ed.): Brassinosteroids: a Class of Plant Hormone. Pp. 143–192. Springer, Dordrecht, Heidelberg, New York 2011.CrossRefGoogle Scholar
  24. Janeczko A., Koscielniak J., Pilipowicz M. et al.: Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress.–Photosynthetica 43: 293–298, 2005.CrossRefGoogle Scholar
  25. Janeczko A., Biesaga-Koscielniak J., Okleštková J. et al.: Role of 24-epibrassinolide in wheat production: physiological effects and uptake.–J. Agron. Crop Sci. 196: 311–321, 2010.Google Scholar
  26. Janeczko A., Okleštková J., Pociecha E. et al.: Physiological effects and transport of 24-epibrassinolide in heat-stressed barley.–Acta Physiol. Plant. 33: 1249–1259, 2011.CrossRefGoogle Scholar
  27. Janeczko A., Gruszka D., Pociecha E. et al.: Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis.–Plant Physiol. Bioch. 99: 126–141, 2016.CrossRefGoogle Scholar
  28. Juhász C., Tóbiás I., Ádám A.L. et al.: Pepper 9-and 13-lipoxygenase genes are differentially activated by two tobamoviruses and by hormone treatments.–Physiol. Mol. Plant P. 92: 59–69, 2015.CrossRefGoogle Scholar
  29. Kaplan F., Guy C.L.: Beta-Amylase induction and the protective role of maltose during temperature shock.–Plant Physiol. 135: 1674–1684, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Knipling E.B.: Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation.–Remote Sens. Environ. 1: 155–159, 1970.CrossRefGoogle Scholar
  31. Koch K.E.: Carbohydrate-modulated gene expression in plants.–Annu. Rev. Plant Phys. 47: 509–540, 1996.CrossRefGoogle Scholar
  32. Krezhova D., Dikova B., Maneva S.: Ground based hyperspectral remote sensing for disease detection of tobacco plants.–Bulg. J. Agric. Sci. 20: 1142–1150, 2014.Google Scholar
  33. Livingston D.P. III, Henson C.A.: Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening.–Plant Physiol. 116: 403–408, 1998.CrossRefPubMedCentralGoogle Scholar
  34. Livingston D.P. III, Hincha D.K., Heyer A.G.: Fructan and its relationship to abiotic stress tolerance in plants.–Cell. Mol. Life Sci. 66: 2007–2023, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lucas W.J., Olesinski A., Hull R.J. et al.: Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants.–Planta 190: 88–96, 1993.CrossRefGoogle Scholar
  36. Moghaddam B.M.R, van den Ende W.: Sugars and plant innate immunity.–J. Exp. Bot. 63: 3989–3998, 2012.CrossRefGoogle Scholar
  37. Müller J., Aeschbacher R.A., Sprenger N. et al.: Disaccharidemediated regulation of sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves.–Plant Physiol. 123: 265–274, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K.: The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint.–Photosynth. Res. 94: 275–290, 2007.CrossRefPubMedGoogle Scholar
  39. Peñuelas J., Filella I., Biel C. et al.: The reflectance at the 950-970 nm region as an indicator of plant water status.–Int. J. Remote Sens. 14: 1887–1905, 1993.CrossRefGoogle Scholar
  40. Peñuelas J., Gamon J.A., Fredeen A.L. et al.: Reflectance indices associated with physiological changes in nitrogen-and waterlimited sunflower leaves.–Remote Sens. Environ. 48: 135–146, 1994.CrossRefGoogle Scholar
  41. Peñuelas J., Filella I., Baret F.: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectra reflectance.–Photosynthetica 31: 221–230, 1995a.Google Scholar
  42. Peñuelas J., Filella I., Gamon J.A.: Assessment of photosynthetic radiation-use efficiency with spectral reflectance.–New Physiol. 131: 291–296, 1995b.CrossRefGoogle Scholar
  43. Peñuelas J., Isla R., Filella I. et al.: Visible and near-infrared reflectance assessment of salinity effects on barley.–Crop Sci. 37: 198–202, 1997.CrossRefGoogle Scholar
  44. Pérez-Bueno M.L., Rahoutei J., Sajnani C. et al.: Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses.–Proteomics 4: 418–425, 2004.CrossRefPubMedGoogle Scholar
  45. Rahoutei J., Barón M., García-Luque I. et al.: Effect of tobamovirus infection on thermoluminescence characteristics of chloroplasts from infected plants.–Z. Naturforsch. C 54: 634–639, 1999.CrossRefGoogle Scholar
  46. Rahoutei J., García-Luque I., Barón M.: Inhibition of photosynthesis by viral infection: effect on PSII structure and function.–Physiol. Plantarum 110: 286–292, 2000.CrossRefGoogle Scholar
  47. Roitsch T., Balibrea M.E., Hofmann M. et al.: Extracellular invertase: key metabolic enzyme and PR protein.–J. Exp. Bot. 54: 513–524, 2003.CrossRefPubMedGoogle Scholar
  48. Rolland F., Baena-Gonzalez E., Sheen J.: Sugar sensing and signaling in plants: conserved and novel mechanisms.–Annu. Rev. Plant Biol. 57: 675–709, 2006.CrossRefPubMedGoogle Scholar
  49. Rys M., Juhász C., Surowka E. et al.: Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy.–Plant Physiol. Bioch. 83: 267–278, 2014.CrossRefGoogle Scholar
  50. Ryšlavá H., Müller K., Semorádová S. et al.: Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y.–Photosynthetica 41: 357–363, 2003.CrossRefGoogle Scholar
  51. Shalitin D., Wolf S.: Cucumber mosaic virus infection affects sugar transport in melon plants.–Plant Physiol. 123: 597–604, 2000.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Skoczowski A., Janeczko A., Gullner G. et al.: Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescens.–J. Therm. Anal. Calorim. 104: 131–139, 2011.CrossRefGoogle Scholar
  53. Smeekens S., Ma J., Hanson J. et al.: Sugar signals and molecular networks controlling plant growth.–Curr. Opin. Plant Biol. 13: 274–279, 2010.CrossRefPubMedGoogle Scholar
  54. Solovchenko A.: Quantification of screening pigments and their efficiency in situ.–In: Solovchenko A. (ed.): Photoprotection in Plants. Pp. 119–141. Springer Series in Biophysics 14, Springer-Verlag, Berlin, Heidelberg 2010.CrossRefGoogle Scholar
  55. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetics samples.–In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London 2000.Google Scholar
  56. Strasser R.J., Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis.–Biochim. Biophys. Acta 1797: 1313–1326, 2010.CrossRefPubMedGoogle Scholar
  57. Tauzin A.S., Giardina T.: Sucrose and invertases, a part of the plant defense response to the biotic stresses.–Front. Plant Sci. 5: 293, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tóbiás I., Fraser R.S.S., Gerwitz A.: The gene-for-gene relationship between Capsicum annuum L. and tobacco mosaic virus: effects on virus multiplication, ethylene synthesis and accumulation of pathogenesis-related proteins.–Physiol. Mol. Plant Pathol. 35: 271–286, 1989.CrossRefGoogle Scholar
  59. Velasco L., Janssen D., Ruiz-Garcia L. et al.: The complete nucleotide sequence and development of a diferential detection assay for a pepper mild mottle virus (PMMoV) isolate that overcomes L 3 resistance in pepper.–J. Virol. Methods 106: 135–140, 2002.CrossRefPubMedGoogle Scholar
  60. Wang Z-Y.: Brassinosteroids modulate plant immunity at multiple levels.–P. Natl. Acad. Sci. USA 109: 7–8, 2012.CrossRefGoogle Scholar
  61. Yuan L., Shu S., Sun J. et al.: Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress.–Photosynth. Res. 112: 205–214, 2012.CrossRefPubMedGoogle Scholar
  62. Yusuf M., Fariduddin Q., Ahmad I. et al.: Brassinosteroidmediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel.–Physiol. Mol. Biol. Plants 20: 449–460, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • A. Janeczko
    • 1
  • M. Dziurka
    • 1
  • G. Gullner
    • 2
  • M. Kocurek
    • 3
  • M. Rys
    • 1
  • D. Saja
    • 1
  • A. Skoczowski
    • 1
  • I. Tóbiás
    • 2
  • A. Kornas
    • 4
  • B. Barna
    • 2
  1. 1.Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
  2. 2.Plant Protection Institute, Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.Institute of BiologyThe Jan Kochanowski UniversityKielcePoland
  4. 4.Institute of BiologyPedagogical University of CracowKrakówPoland

Personalised recommendations