Skip to main content
Log in

Brassinosteroid-mediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The role of 28-homobrassinolide (HBL) in countering nickel-induced oxidative damage through overexpression of antioxidant enzymes and proline in Vigna radiata has been investigated. Two varieties of V. radiata, one sensitive to Ni (PDM-139) and the other tolerant to Ni (T-44), were sown in the soil fed with different levels (0, 50, 100 or 150 mg kg−1) of Ni, and at 29-day stage, foliage of plants was applied with deionized water (control), 10−8 or 10−6 M of HBL. The plants were sampled at 45-day stage of growth to assess various physiological as well as biochemical characteristics. The remaining plants were allowed to grow up to maturity to study the yield characteristics. The growth traits, leghemoglobin, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, photosynthesis efficiency, leaf water potential, activities of nitrate reductase, carbonic anhydrase and nitrogenase decreased proportionately with the increasing concentrations of nickel, whereas electrolyte leakage, various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and accumulation of proline increased at 45-day stage. However, the exogenously applied HBL to the nickel-stressed or non-stressed plants improved growth, nodulation and photosynthesis and further enhanced the various antioxidant enzymes viz. catalase, peroxidase and superoxide dismutase and accumulation of proline. The deleterious impact of Ni on the plants was concentration dependent where HBL applied to the foliage induced overexpression of antioxidant enzyme and accumulation of proline (osmolyte) which could have conferred tolerance to Ni up to 100 mg kg−1, resulting in improved growth, nodulation, photosynthesis and yield attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen fixing microorganism and host legumes In: Zaidi A, Wani PA, Khan MS (eds) Toxicity of heavy metals to legumes and bioremediation. Springer-Verlag

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acid and protein content in cultured cell of Chlorella vulgaris. Plant Physiol Biochem 38:209–215

    Article  CAS  Google Scholar 

  • Bajguz A, Asami T (2005) Suppression of Wolffiaarrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry 66:1787–1796

    Article  PubMed  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Barbafieri M, Tassi E (2011) Brassinosteroids for phytoremediation application. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Dordrecht, pp 403–438

    Google Scholar 

  • Barker AV (2006) Nickel. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press

  • Bates LS, Walden RT, Tearse ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp LO, Fridovich I (1971) Superoxide dismutase improved assays and assay applicable to acrylamide gels. Ann Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Carpentier R (2001) The negative action of toxic divalent cations on the photosynthetic apparatus. In: Passarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 763–772

    Google Scholar 

  • Chan PK, Gresshoff PM (2009) Roles of plant hormones in legume nodulation. In: Horst W, Doelle Edgar J, DaSilva (eds) Encyclopedia of Life Support Systems (EOLSS): biotechnology. EOLSS Publishers, Oxford

    Google Scholar 

  • Chance B, Maehly AC (1956) Assay of catalase and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304–313

    CAS  Google Scholar 

  • Del Rio LA, Corpas J, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. Inter Union Biochem Mol Biol (IUBMB) Life 55:71–81

    Article  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gills K, Hamilton JK, Robbers PA, Smith F (1956) Chlorometric method for determination of sugars and related substances. Ann Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evolution of a rapid test of the hidden hunger of zinc in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Fariduddin Q, Ahmad A, Hayat S (2004) Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biol Planta 48:465–468

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49:55–64

    Article  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  PubMed  CAS  Google Scholar 

  • Friedlova M (2010) The influence of heavy metals on soil biological and chemical properties. Soil Water Res 5:21–27

    CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll content in wheat shoots. Biol Planta 50:653–659

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gomes MMA, Ferraz TM, Netto AT, Rosa RCC, Campostrini E, Leal NR, Zullo MAT, Nunez-Vazquez M (2003) Efeitos da aplicacao de brassinosteroidesnastrocasgasosas e fluorescencia da clorofilaemmaracujazeiroamarelosubmetido a deficienciahıdrica. Braz J Plant Physiol 15:348

    Article  Google Scholar 

  • Gomes JRA, Moldes CA, Delite FS, Pompeu GB, Gratas PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Antoxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  Google Scholar 

  • Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

    Article  PubMed  CAS  Google Scholar 

  • Hopkins WJ (1995) Physiology of plants under stress. In: Hopkins WJ (ed) Introduction to plant physiology. Wiley, New York, p 438

    Google Scholar 

  • Iwahori S, Tominaga S, Higuchi S (1990) Retardation of abscission in citrus leaf and fruitlet explants by brassinolide. Plant Growth Regul 9:119–125

    Article  CAS  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissue. Biochem Biophys Res Commun 43:1274–1279

    Article  PubMed  CAS  Google Scholar 

  • Jocsak I, Vegvari GY, Droppa M (2005) Heavy metal detoxification by organic acids in barley seedlings. Acta Biol Szeged 49:99–101

    Google Scholar 

  • Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photo Res 58:123–133

    Article  CAS  Google Scholar 

  • Lindner RC (1944) Rapid analytical method for some more common inorganic constituents of plant tissue. Plant Physiol 19:76–89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Llamas A, Ullrich CI, Sanz A (2008) Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiol Biochem 46:905–910

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (2005) Mineral nutrition of higher plants mineral nutrition of higher plants. Mineral nutrition of higher plants, 6th edn. Academic, London

    Google Scholar 

  • Nassar NMA (2004) Polyploidy, chimera and fertility of interspecific cassava (Manihot esculenta Crantz) hybrids. Ind J Genet Plant Breed 64:132–133

    Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely non-overlapping transcriptional responses. Cell 126:467–475

    Article  PubMed  CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals 20:841–851

    Article  PubMed  CAS  Google Scholar 

  • Ozdemir F, Bor M, Demiral T, Turkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211

    Article  Google Scholar 

  • Rahman H, Sarbreen S, Alam S, Kawai S (2005) Effect of nickel on growth and composition of metal micronutrient in barely plants grown in nutrient solution. J Plant Nutr 28:393–404

    Article  CAS  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  PubMed  CAS  Google Scholar 

  • Sadasivum S, Manickam A (1992) Biochemical methods. New Age International Pvt. Ltd. Publishers, New Delhi

    Google Scholar 

  • Sharma P, Dubey RS (2005) Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol 162:854–864

    Article  PubMed  CAS  Google Scholar 

  • Simon T (1999) The effect of increasing rates of nickel and arsenic on the growth of radish and soil micro-flora. Rostlinna Vysoba 45:421–430 (in Czech)

    CAS  Google Scholar 

  • Singh K, Pandey SN (2011) Effect of nickel stress on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L. J Environ Biol 32:391–394

    PubMed  CAS  Google Scholar 

  • Sinha S, Pandey K (2003) Nickel induced toxic effects and bioaccumulation in the submerged plant, Hydrill averticillata (L.F.) Royle under repeated metal exposure. Bull Environ Contam Toxicol 71:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Sresty TVS, Rao KV (1999) Ultrastuctural alterations in response to zinc and nickel stress in the root cells of pigeon pea. Environ Exp Bot 41:3–13

    Article  CAS  Google Scholar 

  • Sullivan CY, Ross WM (1979) Selecting the drought and heart resistance in grain sorghum. In: Mussel H, Staples RC (eds) Stress physiology in crop plants. Wiley, New York, pp 263–328

    Google Scholar 

  • Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki K, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M (2004) Control of nodule number by the phytohormones abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45:914–922

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Tripathy BC, Bhatia B, Mohanty P (1981) Inactivation of chloroplast photosynthetic electron-transport activity by Ni2+. Biochem Biophys Acta 638:217–224

    CAS  Google Scholar 

  • Xia XJ, Huang LF, Zhou YH, Mao WH, Shi K, Wu JX, Asami T, Chen Z, Yu JQ (2009) Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta 230:1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen Z, Yu JQ (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191:706–720

    Article  PubMed  CAS  Google Scholar 

  • Yih RY, Clark HE (1965) Carbohydrate and protein content of boron deficient tomato root tips in relation to anatomy growth. Plant Physiol 40:312–315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yusuf M (2011) Effect of brassinosteroids on nickel induced changes in Vigna radiata. PhD thesis, Aligarh Muslim University, Aligarh, India

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2011) Protective responses of 28-homobrssinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60:68–76

    Article  PubMed  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Ahmad A (2012) 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. Plant Physiol Biochem 57:143–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

M. Yusuf gratefully acknowledges the financial assistance rendered by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India, in a form of Young Scientists (SB/FT/LS-210-2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qazi Fariduddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusuf, M., Fariduddin, Q., Ahmad, I. et al. Brassinosteroid-mediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel. Physiol Mol Biol Plants 20, 449–460 (2014). https://doi.org/10.1007/s12298-014-0259-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-014-0259-x

Keywords

Navigation