Skip to main content

Quantification of Screening Pigments and Their Efficiency In Situ

  • Chapter
  • First Online:
Photoprotection in Plants

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 14))

Abstract

This chapter deals with nondestructive quantification of screening pigment content and estimation of the efficiency of screening pigments. The first part of the chapter describes the approaches for the employment of the relationships between changes in screening pigment content and composition and the effects screening pigments exert on reflection of light by plants (considered in detail in the previous chapter) for quantification of screening pigments in situ. The second part considers the current approaches for estimating the efficiency of screening by different pigments in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Pinelli P, Ebner S, Romani A, Cartelat A, Cerovic Z (2005) Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. J Agric Food Chem 53:1354–1363

    Article  PubMed  CAS  Google Scholar 

  • Agati G, Traversi M, Cerovic Z (2008) Chlorophyll fluorescence imaging for the noninvasive assessment of anthocyanins in whole grape (Vitis vinifera L.) bunches. Photochem Photobiol 84:1431–1434

    Article  PubMed  CAS  Google Scholar 

  • Barnes P, Searles P, Ballare C, Ryel R, Caldwell M (2000) Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies. Physiol Planta 109:274–283

    Article  CAS  Google Scholar 

  • Barthod S, Cerovic Z, Epron D (2007) Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? J Exp Bot 58:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Baur P, Stulle K, Uhlig B, Schönherr J (1998) Absorption von Strahlung im UV-B und Blaulichtbereich von Blattkutikeln ausgewählter Nutzpflanzen. Gartenbauwissenschaft 63:145–152

    Google Scholar 

  • Bengtsson G, Schöner R, Lombardo E, Schöner J, Borge G, Bilger W (2006) Chlorophyll fluorescence for non-destructive measurement of flavonoids in broccoli. Postharvest Biol Technol 39:291–298

    Article  CAS  Google Scholar 

  • Bidel L, Meyer S, Goulas Y, Cadot Y, Cerovic Z (2007) Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. J Photochem Photobiol B Biol 88:163–179

    Article  CAS  Google Scholar 

  • Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Planta 101:754–763

    Article  CAS  Google Scholar 

  • Bilger W, Johnsen T, Schreiber U (2001) UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. J Exp Bot 52:2007–2014

    Article  PubMed  CAS  Google Scholar 

  • Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195

    Article  PubMed  CAS  Google Scholar 

  • Burchard P, Bilger W, Weissenbock G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    Article  CAS  Google Scholar 

  • Buschmann C, Nagel E (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int J Remote Sens 14:711–722

    Article  Google Scholar 

  • Cerovic Z et al (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676

    Article  CAS  Google Scholar 

  • Cockell C, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    Article  PubMed  CAS  Google Scholar 

  • Cubeddu R et al (2001) Time-resolved reflectance spectroscopy applied to the non-destructive monitoring of the internal optical properties in apples. Appl Spectrosc 55:1368–1374

    Article  CAS  Google Scholar 

  • Day T, Martin G, Vogelmann T (1993) Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ 16:735–741

    Article  Google Scholar 

  • Filella I, Penuelas J (1999) Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol 145:157–165

    Article  Google Scholar 

  • Fukshansky L (1981) Optical properties of plant tissue. In: Smith H (ed) Plants and the daylight spectrum. Springer, Berlin, pp 37–303

    Google Scholar 

  • Gamon J, Surfus J (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol 143:105–117

    Article  CAS  Google Scholar 

  • Gitelson A, Merzlyak M (1993) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143:286–292

    Article  Google Scholar 

  • Gitelson A, Merzlyak M (1994) Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. J Photochem Photobiol B Biol 22:247–252

    Article  CAS  Google Scholar 

  • Gitelson A, Merzlyak M (1996) Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol 148:494–500

    Article  CAS  Google Scholar 

  • Gitelson A, Merzlyak M (1998) Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res 22:689–692

    Article  CAS  Google Scholar 

  • Gitelson AA, Merzlyak MN, Chivkunova OB (2001) Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem Photobiol 74:38–45

    Article  PubMed  CAS  Google Scholar 

  • Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002) Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem Photobiol 75:272–281

    Article  PubMed  CAS  Google Scholar 

  • Gitelson A, Gritz Y, Merzlyak M (2003a) Non destructive chlorophyll assessment in higher plant leaves: algorithms and accuracy. J Plant Physiol 160:271–282

    Article  PubMed  CAS  Google Scholar 

  • Gitelson AA, Gritz Y, Merzlyak MN (2003b) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160:271–282

    Article  PubMed  CAS  Google Scholar 

  • Gitelson A, Keydan G, Merzlyak M (2006) Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys Res Lett 33:L11402

    Article  Google Scholar 

  • Gitelson A, Chivkunova O, Merzlyak M (2009) Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am J Bot 96:1861

    Article  PubMed  CAS  Google Scholar 

  • Gross J (1987) Carotenoids: pigments in fruits. Food science and technology. Series of monographs. Academic, London, pp 87–98

    Google Scholar 

  • Hagen S, Solhaug K, Bengtsson G, Borge G, Bilger W (2006) Chlorophyll fluorescence as a tool for non-destructive estimation of anthocyanins and total flavonoids in apples. Postharvest Biol Technol 41:156–163

    Article  CAS  Google Scholar 

  • Hagen S et al (2007) Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): effect of postharvest UV-B irradiation. Postharvest Biol Technol 45:1–10

    Article  CAS  Google Scholar 

  • Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566

    Article  CAS  Google Scholar 

  • Knee M (1980) Methods of measuring green colour and chlorophyll content of apple fruit. Int J Food Sci Technol 15:493–500

    Article  Google Scholar 

  • Knee M (1988) Carotenol esters in developing apple fruits. Phytochemistry 27:1005–1009

    Article  CAS  Google Scholar 

  • Kolb C, Kaser M, Kopecky J, Zotz G, Riederer M, Pfündel E (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 127:863–875

    Article  PubMed  CAS  Google Scholar 

  • Krauss P, Markstadter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085

    Article  Google Scholar 

  • Lichtenthaler H (1987) Chlorophyll and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:331–382

    Google Scholar 

  • Lichtenthaler H, Gitelson A, Lang M (1996) Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J Plant Physiol 148:483–493

    Article  CAS  Google Scholar 

  • Ma FW, Cheng LL (2004) Exposure of the shaded side of apple fruit to full sun leads to up-regulation of both the xanthophyll cycle and the ascorbate-glutathione cycle. Plant Sci 166:1479–1486

    Article  CAS  Google Scholar 

  • Markstädter C, Queck I, Baumeister J, Riederer M, Schreiber U, Bilger W (2001) Epidermal transmittance of leaves of Vicia faba for UV radiation as determined by two different methods. Photosynth Res 67:17–25

    Article  PubMed  Google Scholar 

  • Merzlyak MN (2006) Modeling pigment contributions to spectral reflection of apple fruit. Photochem Photobiol Sci 5:748–754

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A (2002) Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Plant Sci 163:881–888

    Article  CAS  Google Scholar 

  • Merzlyak M, Khozin I, Cohen Z (1996) Spectrophotometric analysis of carotenoids in plant extracts based on elimination of chlorophyll absorption. Phytochem Anal 7:294–299

    Article  CAS  Google Scholar 

  • Merzlyak M, Gitelson A, Chivkunova O, Rakitin V (1999) Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Planta 106:135–141

    Article  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A, Chivkunova O (2002a) Patterns of pigment changes in apple fruits during adaptation to high sunlight and sunscald development. Plant Physiol Biochem 40:679–684

    Article  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Melo TB, Naqvi KR (2002b) Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves. Photosynth Res 72:263–270

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak M, Gitelson A, Chivkunova O, Solovchenko A, Pogosyan S (2003a) Application of reflectance spectroscopy for analysis of higher plant pigments. Russ J Plant Physiol 50:704–710

    Article  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A, Gitelson A (2003b) Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol Technol 27:197–212

    Article  CAS  Google Scholar 

  • Merzlyak M, Solovchenko A, Pogosyan S (2005a) Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Photochem Photobiol Sci 4:333–340

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak MN, Solovchenko AE, Smagin AI, Gitelson AA (2005b) Apple flavonols during fruit adaptation to solar radiation: spectral features and technique for non-destructive assessment. J Plant Physiol 162:151–160

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR (2008a) Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J Exp Bot 59:3903–3911

    Article  PubMed  CAS  Google Scholar 

  • Merzlyak MN, Melo TB, Naqvi KR (2008b) Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. J Exp Bot 59:349–359

    Article  PubMed  CAS  Google Scholar 

  • Naqvi K, Hassan T, Naqvi Y (2004) Expeditious implementation of two new methods for analysing the pigment composition of photosynthetic specimens. Spectrochim Acta A Mol Biomol Spectrosc 60:2783–2791

    Article  PubMed  Google Scholar 

  • Penuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    Article  Google Scholar 

  • Richardson A, Duigan S, Berlyn G (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194

    Article  CAS  Google Scholar 

  • Solovchenko A, Merzlyak M (2003) Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochem Photobiol Sci 2:861–866

    Article  PubMed  CAS  Google Scholar 

  • Solovchenko A, Schmitz-Eiberger M (2003) Significance of skin flavonoids for UV-B-protection in apple fruits. J Exp Bot 54:1977–1984

    Article  PubMed  CAS  Google Scholar 

  • Solovchenko A, Chivkunova O, Merzlyak M, Reshetnikova I (2001) A spectrophotometric analysis of pigments in apples. Russ J Plant Physiol 48:693–700

    Article  CAS  Google Scholar 

  • Solovchenko A, Avertcheva O, Merzlyak M (2006) Elevated sunlight promotes ripening-associated pigment changes in apple fruit. Postharvest Biol Technol 40:183–189

    Article  CAS  Google Scholar 

  • Solovchenko A, Chivkunova O, Gitelson A, Merzlyak M (2010a) Non-destructive estimation pigment content, ripening, quality and damage in apple fruit with spectral reflection in the visible range. Fresh Prod 4:91–102

    Google Scholar 

  • Solovchenko AE, Merzlyak MN, Pogosyan SI (2010b) Light-induced decrease of reflectance provides an insight in the photoprotective mechanisms of ripening apple fruit. Plant Sci 178:281–288

    Article  CAS  Google Scholar 

  • Steele M, Gitelson A, Rundquist D, Merzlyak M (2009) Nondestructive estimation of anthocyanin content in grapevine leaves. Am J Enol Vitic 60:87

    CAS  Google Scholar 

  • Vogelmann T, Han T (2000) Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant Cell Environ 23:1303–1311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Solovchenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solovchenko, A. (2010). Quantification of Screening Pigments and Their Efficiency In Situ. In: Photoprotection in Plants. Springer Series in Biophysics, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13887-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13887-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13886-7

  • Online ISBN: 978-3-642-13887-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics