Skip to main content
Log in

Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the study has been to determine the protection effect of brassinosteroid (BR27) in oilseed rape cotyledons against infection by an incompatible wild type of, a hypersensitive response mutant of and saprophytic Pseudomonas bacteria. In this paper, membrane permeability, PSII efficiency and metabolic activity were analysed. The following strains of Pseudomonans were used: P. syringae pv. syringae (Ps), P. syringae pv. syringae hrcC mutant (Pm) and P. fluorescence (Pf). The study was carried out using two cultivars of spring oilseed rape (Brassica napus L.): ‘Licosmos’ and ‘Huzar’. Pre-treatment of cotyledons with BR27 caused about 50–70% increase in ion leakage for both cultivars. However, BR27 significantly decreased ion leakage from cotyledons inoculated with Ps in both cultivars. Infection with Ps and Pf caused disturbances of energy flow in PSII by lowering its efficiency in rape cotyledons. We noted insignificant impact of 24-epibrassinolide on PSII efficiency if compared to absolute control, but generally it had a positive effect in plants infected with bacteria. The values of heat flow in all treatments, except for cotyledons infected with Ps, decreased during 20 h after inoculation. However, the curves of heat flow for Ps-infected cotyledons showed a completely different pattern with at least two peaks. BR27 pre-treated cotyledons infected with Ps had higher heat flow in comparison to Ps infected ones. BR27 treatment did not change specific enthalpy of cotyledon growth (Δgh) for both cultivars if compared with absolute control. However, infection with Ps markedly increased Δgh values by about 200% for both cultivars. We suggested protective action of BR27 in oilseed rape cotyledons after bacterial infection with Pseudomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AC:

Absolute control

ABS:

Energy absorption

BRs:

Brassinosteroids

BR27 :

24-Epibrassinolide

cfu:

Colony forming unit

DIo:

Energy dissipation

ETo:

Energy flux for electron transport

Fv/Fm:

Maximum quantum yield of PSII

HR:

Hypersensitive response

Ps :

Pseudomonas syringae pv. syringae

Pm :

Pseudomonas syringae pv. syringae hrcC mutant

Pf :

Pseudomonas fluorescence

RCs:

PSII reaction centres

TRo:

Energy flux for trapping

Δgh :

Specific enthalpy of growth

References

  1. Grove MD, Spencer GF, Rohwedder WK, Mandawa N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature. 1979;281:216–7.

    Article  CAS  Google Scholar 

  2. Bajguz A, Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry. 2003;62:1027–46.

    Article  CAS  Google Scholar 

  3. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature. 2001;410:380–3.

    Article  CAS  Google Scholar 

  4. Symons GM, Ross JJ, Jager CE, Reid JB. Brassinosteroid transport. J Exp Bot. 2008;59:17–24.

    Article  CAS  Google Scholar 

  5. Janeczko A, Biesaga-Kościelniak J, Oklešt’ková J, Filek M, Dziurka M, Szarek-Łukaszewska G, Kościelniak J. Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci. 2010;196:311–21.

    CAS  Google Scholar 

  6. Janeczko A, Swaczynová J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol Plant. 2010;54:477–82.

    Article  CAS  Google Scholar 

  7. Zullo MAT, Kohout L. Semisystematic nomenclature of brassinosteroids. Plant Growth Regul. 2004;42:15–28.

    Article  Google Scholar 

  8. Iwasaki T, Shibaoka H. Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol. 1991;32:1007–14.

    CAS  Google Scholar 

  9. Ramraj VM, Vyas BN, Godrej NB, Mistry KB, Swami BN, Singh N. Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J Agric Sci. 1997;128:405–13.

    Article  CAS  Google Scholar 

  10. Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction. Plant J. 2000;24:693–701.

    Article  CAS  Google Scholar 

  11. Zullo MAT, Adam G. Brassinosteroid phytohormones—structure, bioactivity and applications. Braz J Plant Physiol. 2002;14:83–121.

    Article  Google Scholar 

  12. Fariduddin Q, Hasan SA, Ali B, Hayat S, Ahmad A. Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol. 2008;32:17–21.

    CAS  Google Scholar 

  13. Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem. 2009;47:1–8.

    Article  CAS  Google Scholar 

  14. Volynets AP, Pschenichnaya LA, Manzhelesova NE, Morozik GV, Khripach VA. The nature of protective action of 24-epibrassinolide on barley plants. Proc Plant Growth Regul Am Soc. 1997;24:133–7.

    Google Scholar 

  15. Khripach VA, Zhabinskii VN, de Groot AE. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot. 2000;86:441–7.

    Article  CAS  Google Scholar 

  16. Krishna P. Brassinosteroid-mediated stress responses. J Plant Growth Regul. 2003;22:289–97.

    Article  CAS  Google Scholar 

  17. Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takasuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33:887–98.

    Article  CAS  Google Scholar 

  18. Heath MC. Hypersensitive response-related death. Plant Mol Biol. 2000;44:321–34.

    Article  CAS  Google Scholar 

  19. Chou H-M, Bundock N, Rolfe SA, Scholes JD. Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol. 2000;1:99–113.

    Article  CAS  Google Scholar 

  20. Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant. 2004;122:419–28.

    Article  CAS  Google Scholar 

  21. Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta. 2006;225:1–12.

    Article  CAS  Google Scholar 

  22. Janeczko A, Tóbias I, Skoczowski A, Dubert F, Gullner G, Barna B. Bacterial infection and pretreatment with 24-epibrassinolide markedly affect the heat emission and membrane permeability of rape cotyledons. Thermochim Acta. 2007;458:88–91.

    Article  CAS  Google Scholar 

  23. Deng W-L, Preston G, Collmer A, Chang Ch-J, Huang H-Ch. Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J Bacteriol. 1998;180:4523–31.

    CAS  Google Scholar 

  24. Szatmári Á, Ott PG, Varga GJ, Besenyei E, Czelleng A, Klement Z, Bozsó Z. Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. Plant Cell Rep. 2006;25:728–40.

    Article  Google Scholar 

  25. Barna B, Adám A, Király Z. Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. Naturwissenschaften. 1993;80:420–2.

    Article  Google Scholar 

  26. Strasser RJ, Srivatava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetics samples. In: Yunus M, Pathre U, Mohaty P, editors. Probing photosynthesis: mechanism, regulation and adaptation. London: Taylor and Francis; 2000. p. 445–83.

    Google Scholar 

  27. Janeczko A, Gullner G, Skoczowski A, Dubert F, Barna B. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant. 2007;51:355–8.

    Article  CAS  Google Scholar 

  28. Zhang Z, Ramirez J, Reboutier D, Brault M, Trouverie J, Pennarun AM, Amiar Z, Biligui B, Galagovsky L, Rona JP. Brassinosteriods regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. Plant Cell Physiol. 2005;46:1494–504.

    Article  CAS  Google Scholar 

  29. Dhaubhadel S, Browning KS, Gallie DR, Krishna P. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 2002;29:681–91.

    Article  CAS  Google Scholar 

  30. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 2009;150:801–14.

    Article  CAS  Google Scholar 

  31. Ali B, Hasana SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean. Environ Exp Bot. 2008;62:153–9.

    Article  CAS  Google Scholar 

  32. Vlašánková E, Kohut L, Klemš M, Eder J, Reinöhl V, Hradilik J. Evaluation of biological activity of new synthetic brassinolide analogs. Acta Physiol Plant. 2009;31:987–93.

    Article  Google Scholar 

  33. Pogány M, Koehl J, Heiser I, Elstner EF, Barna B. Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant Pathol. 2004;65:39–47.

    Article  Google Scholar 

  34. Barna B, Smigocki AC, Baker JC. Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology. 2008;98:1242–7.

    Article  CAS  Google Scholar 

  35. Shan L, He P, Li J, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe. 2008;4:17–27.

    Article  CAS  Google Scholar 

  36. Sasse JM. Physiological actions of brassinosteroids: an update. J Plant Growth Regul. 2003;22:276–88.

    Article  CAS  Google Scholar 

  37. Janeczko A, Filek W, Biesaga-Kościelniak J, Marcińska L, Janeczko Z. The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Organ Cult. 2003;72:147–51.

    Article  CAS  Google Scholar 

  38. Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S. A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot. 2004;55:1135–43.

    Article  CAS  Google Scholar 

  39. Janeczko A, Kościelniak J, Pilipowicz M, Szarek-Łukaszewska G, Skoczowski A. Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress. Photosynthetica. 2005;43:293–8.

    Article  CAS  Google Scholar 

  40. Wilen RW, Sacco M, Gusta LV, Krishna P. Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. Physiol Plant. 1995;95:195–202.

    Article  CAS  Google Scholar 

  41. Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol. 1999;40:333–42.

    Article  CAS  Google Scholar 

  42. Mazorra LM, Núñez M. Brassinosteroid analogues differentially modify peroxidase activity, superoxide dismutase activity and protein content in tomato seedlings. Cult Tropic. 2000;21:29–33.

    Google Scholar 

  43. Mazorra LM, Núñez M, Hechavarria M, Coll F, Sanchez-Blanco MJ. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant. 2002;45:593–6.

    Article  CAS  Google Scholar 

  44. Singh I, Shono M. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 2005;47:111–9.

    Article  CAS  Google Scholar 

  45. Pociecha E, Janeczko A. Oddziaływanie 24-epibrasinolidu i stresu wysokiej temperatury na aktywność enzymów antyoksydacyjnych i rozwój roślin jęczmienia jarego. Zesz Probl Post Nauk Rol. 2008;524:83–93. (in Polish with English abstract).

    Google Scholar 

  46. Criddle RS, Fontana AJ, Rank DR, Paige L, Hansen D, Breidenbach RW. Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Anal Biochem. 1991;194:413–7.

    Article  CAS  Google Scholar 

  47. Feng W, Ning L, Daley LS, Moreno Y, Azarenko A, Criddle S. Theoretical fitting of energetics of CAM path to calorimetric data. Plant Physiol Biochem. 1994;32:591–8.

    CAS  Google Scholar 

  48. Płażek A, Rapacz M. The intensity of respiration and heat emission from seedlings of Festuca pratensis (Hud.) and Hordeum vulgare L. during pathogenesis caused by Bipolaris sorokiniana (Sacc.) Shoem. Acta Physiol Plant. 2000;22:25–30.

    Article  Google Scholar 

  49. Sigstad EE, Prado FE. A microcalorimetric study of Chenopodium quinoa Willd seed germination. Thermochim Acta. 1999;326:159–64.

    Article  CAS  Google Scholar 

  50. Stokłosa A, Janeczko A, Skoczowski A, Kieć J. Isothermal calorimetry as a tool for estimating resistance of wild oat (Avena fatua L.) to aryloxyphenoxypropionate herbicides. Thermochim Acta. 2006;441:203–6.

    Article  Google Scholar 

  51. Schabes FI, Sigstad EE. A calorimetric study of the allelopathic effect of cnicin isolated from Centaurea diffusa Lam. on the germination of soybean (Glicine max) and radish (Raphanus sativus). Thermochim Acta. 2007;458:84–7.

    Article  CAS  Google Scholar 

  52. Troć M, Skoczowski A, Barańska M. The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim. 2009;95:727–30.

    Article  Google Scholar 

  53. Wadsö I. Trends in isothermal microcalorimetry. Chem Soc Rev. 1997;26:79–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Skoczowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoczowski, A., Janeczko, A., Gullner, G. et al. Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence . J Therm Anal Calorim 104, 131–139 (2011). https://doi.org/10.1007/s10973-010-1204-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1204-z

Keywords

Navigation