Skip to main content
Log in

TiNbCr Multi-Principal Element Alloy Oxidation Behavior in Air at 800–1000 °C

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

The isothermal and cyclic oxidation behavior of a multi-principal element (MPE) TiNbCr alloy at 800–1000 °C in air was studied and compared to Co-based alloy 188. The phase constitution of the MPE alloy consisted of a Nb-rich body-centered cubic (BCC) matrix and Cr-rich Laves precipitates. While isothermal tests conducted at 800 °C led to the formation of a complex mixture of Nb, Ti and Cr oxides, tests at 900 and 1000 °C resulted in the formation of an innermost Cr2O3-rich scale layer which provided improved oxidation resistance. However, for all exposure temperatures, the scaling kinetics of the alloy were linear and therefore deemed non-protective. In contrast, alloy 188 exhibited parabolic scaling kinetics and smaller mass gain per area than the MPE alloy. The similarity between isothermal and cyclic test results for the MPE alloy confirmed that the scale does not offer much protection. Additionally, for all tests, there was extensive internal oxidation and nitridation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. N. Birbilis, S. Choudhary, J. R. Scully, and M. L. Taheri, npj Materials Degradation 5, 2021 (1).

    Article  Google Scholar 

  2. D. B. Miracle and O. N. Senkov, Acta Materialia 122, 2017 (448).

    Article  CAS  Google Scholar 

  3. B. Cantor, Entropy 16, 2014 (4749).

    Article  Google Scholar 

  4. E. P. George, D. Raabe, and R. O. Ritchie, Nature Reviews Materials 4, 2019 (515).

    Article  CAS  Google Scholar 

  5. H. Shi, C. Tang, A. Jianu, R. Fetzer, A. Weisenburger, M. Steinbrueck, M. Grosse, R. Stieglitz, and G. Müller, Corrosion Science 170, 2020 (108654).

    Article  CAS  Google Scholar 

  6. K. Chattopadhyay, R. Mitra, and K. K. Ray, Metallurgical and Materials Transactions A 39, 2008 (577).

    Article  Google Scholar 

  7. B. Gorr, F. Mueller, H. J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, Journal of Alloys and Compounds 688, 2016 (468).

    Article  CAS  Google Scholar 

  8. B. Gorr, S. Schellert, F. Müller, H. J. Christ, A. Kauffmann, and M. Heilmaier, Advanced Engineering Materials 23, 2021 (1).

    Article  Google Scholar 

  9. H. Jiang, M. Hirohasi, Y. Lu, and H. Imanari, Scripta Materialia 46, 2002 (639).

    Article  CAS  Google Scholar 

  10. J. Stringer, Acta Metallurgica 17, 1969 (1227).

    Article  CAS  Google Scholar 

  11. O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, Journal of Materials Research 33, 2018 (3092).

    Article  CAS  Google Scholar 

  12. N. R. Philips, M. Carl, and N. J. Cunningham, Metallurgical and Materials Transactions A 51, 2020 (3299).

    Article  CAS  Google Scholar 

  13. O. Kubaschewski and B. E. Hopkins, Journal of the Less Common Metals 2, 1960 (172).

    Article  CAS  Google Scholar 

  14. J. Hidde, C. Guguschev, and D. Klimm, Journal of Crystal Growth 509, 2019 (60).

    Article  CAS  Google Scholar 

  15. T. M. Butler, O. N. Senkov, T. I. Daboiku, M. A. Velez, H. E. Schroader, L. G. Ware, and M. S. Titus, Intermetallics 140, 2022 (07374).

    Article  Google Scholar 

  16. T. M. Butler, O. N. Senkov, M. A. Velez, and T. I. Daboiku, Intermetallics 138, 2021 (107323).

    Article  CAS  Google Scholar 

  17. N. J. Welch, M. J. Quintana, T. M. Butler, and P. C. Collins, Journal of Alloys and Compounds 941, 2023 (169000).

    Article  CAS  Google Scholar 

  18. HAYNES® 188® alloy. Nominal Composition. (n.d.). https://www.haynesintl.com/en/datasheet/haynes-188-alloy/#nominal-composition

  19. R. B. Herchenroeder and H. A. No, 188 Aging Characteristics. International symposium on structural stability in superalloys, (1968), p. 110.

  20. V. P. Deodeshmukh, S. K. Srivastava, and J. Bai, Materials and Corrosion 64, 2013 (772).

    Article  CAS  Google Scholar 

  21. J. T. Clenny and C. J. Rosa, Metallurgical Transactions A 11, 1980 (1385).

    Article  Google Scholar 

  22. K. P. Lillerud and P. Kofstad, Journal of the Electrochemical Society 127, 1980 (2397).

    Article  CAS  Google Scholar 

  23. P. Kofstad and K. P. Lillerud, Journal of the Electrochemical Society 127, 1980 (2410).

    Article  CAS  Google Scholar 

  24. H. C. Graham and H. H. Davis, Journal of the American Ceramic Society 54, 1971 (89).

    Article  CAS  Google Scholar 

  25. F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 1995 (211).

    Article  CAS  Google Scholar 

  26. G. Wang, B. Gleeson, and D. L. Douglass, Oxidation of Metals 35, 1991 (317).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Work by I. Dainezi was financially supported through CAPES/PrInt—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Programa Institucional de Internacionalização process n° 88887.696560/2022-00 and CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior process n° 88887.500991/2020-00. Technical and financial support from the University of Pittsburgh. Dr. Butler from the Air Force Research Lab for his work on casting and HIPing in its HIPed condition and his availability to discuss analysis. Dr. Nunes and his research group from the DEMAEEL—USP (University of São Paulo) for their work on casting the TiNbCr alloy in its as-cast condition. PPGCEM/UFSCar (Graduate Program in Materials Science and Engineering/Federal University of São Carlos), the Brazilian research-funding agencies CNPq (National Council for Scientific and Technological Development – grant no. 406740/2021-6, 407624/2022-8, 315903/2023-6) and FAPESP (São Paulo Research Foundation – grant no. 2022/03139–9) for their financial support to this work.

Author information

Authors and Affiliations

Authors

Contributions

Isabela Dainezi contributed to conceptualization, methodology, formal analysis, investigation, data curation and writing—original draft, review and editing; Brian Gleeson contributed to conceptualization, methodology, formal analysis, investigation, data curation, supervision, funding acquisition, resources and writing—review and editing; Bruno Resende Buzatti contributed to methodology, formal analysis, investigation and data curation; Artur Mariano de Sousa Malafaia contributed to methodology, formal analysis, investigation, data curation and writing—review and editing; Carlos Alberto Della Rovere contributed to conceptualization, formal analysis, supervision, project administration, funding acquisition, resources and writing—review and editing.

Corresponding authors

Correspondence to Isabela Dainezi or Carlos Alberto Della Rovere.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dainezi, I., Gleeson, B., Buzatti, B.R. et al. TiNbCr Multi-Principal Element Alloy Oxidation Behavior in Air at 800–1000 °C. High Temperature Corrosion of mater. (2024). https://doi.org/10.1007/s11085-024-10246-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11085-024-10246-x

Keywords

Navigation