We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Oxidation of multicomponent two-phase alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature corrosion behavior of two-phase alloys presents a number of differences compared to that of single-phase alloys. These differences are mainly a consequence of the limitations that the presence of two phases impose on the diffusion of the alloy components. In this review, it is shown that the exclusive scale formation of the more stable, slow-growing oxide is more difficult on a two-phase alloy, requiring a higher concentration of the more reactive alloy component than for a corresponding single-phase alloy. The main types of corrosion behavior for binary two-phase alloys are also considered, showing that if diffusion in the alloy is slow the scale structure will closely reflect that of the starting material. When diffusion in the alloy is not negligible, the scale structure becomes similar to what forms on single-phase alloys. The oxidation of two-phase ternary alloys is shown to be even more complex than the two-phase binary alloys. The principal added complexity compared to the binary alloys is that diffusion in the ternary alloys may also occur in the presence of two metal phases, as a result of an extra degree of freedom in the ternary system. The oxidation behavior of two-phase ternary alloys is discussed in the context of a number of recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London, 1988).

    Google Scholar 

  2. G. R. Wallwork,Reps. Progr. Phys. 39, 401 (1976).

    Google Scholar 

  3. D. P. Whittle, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983), p. 171.

    Google Scholar 

  4. G. C. Wood and F. H. Stott,Mater. Sci. Technol. 3, 519 (1987).

    Google Scholar 

  5. G. Wahl,Thin Solid Films 107, 417 (1983).

    Google Scholar 

  6. J. Stringer, P. Corkish, and D. P. Whittle, inStress Effects on the Oxidation of Metals, J. V. Cathcart, ed. (Met. Soc. AIME, New York, 1975), p. 75.

  7. Ge Wang, B. Gleeson, and D. L. Douglass,Oxid. Met. 35, 333 (1991).

    Google Scholar 

  8. Ge Wang,J. Phys. IV, Colloq. C9, suppl.J. Phys. III 3, 873 (1993).

    Google Scholar 

  9. S. Ling, T. A. Ramanarayanan, and R. Petkovi-Luton,Oxid. Met. 40, 179 (1993).

    Google Scholar 

  10. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass,Oxid. Met. 39, 197 (1993).

    Google Scholar 

  11. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass,Oxid. Met. 40, 373 (1993).

    Google Scholar 

  12. F. Gesmundo, F. Viani, Y. Niu, and D. L. Douglass,Oxid. Med. 42, 465 (1994).

    Google Scholar 

  13. F. Gesmundo, F. Viani, and Y. Niu,Oxid. Met. 42, 409 (1994).

    Google Scholar 

  14. F. Gesmundo, Y. Niu, and F. Viani,Oxid. Met. 43, 379 (1995).

    Google Scholar 

  15. F. Gesmundo, Y. Niu, and F. Viani,Oxid. Met., accepted for publication.

  16. J. L. Smialek and G. H. Meier, inSuperalloys II, C. T. Sims, N. S. Stoloff, and W. C. Hagel, eds. (Wiley, New York, 1987), p. 293.

    Google Scholar 

  17. G. T. Lai,High-Temperature Corrosion of Engineering Alloys (ASM, Materials Park, OH, 1990).

    Google Scholar 

  18. J. A. Nesbitt, N. S. Jacobson, and R. A. Miller, inSurface Engineering, Vol. II:Technological Aspects, R. Kossowsky, ed. (CRC Press, Boca Raton, FL, 1989), p. 25.

    Google Scholar 

  19. R. Dorolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle, and M. V. Nathal,Structural Intermetallics (TMS, Warrendale, PA, 1993).

    Google Scholar 

  20. T. Grobstein and J. Doychak (eds.),Oxidation of High-Temperature Intermetallics (TMS, Warrendale, PA, 1988).

    Google Scholar 

  21. J. G. Smeggil,Oxid. Met. 9, 31 (1975).

    Google Scholar 

  22. J. G. Smeggil,Oxid. Met. 9, 225 (1975).

    Google Scholar 

  23. J. Stringer, D. M. Johnson, and D. P. Whittle,Oxid. Met. 12, 257 (1978).

    Google Scholar 

  24. M. E. El Dahshan and M. I. Hazzaa,Werkst. Korros. 38, 422 (1987).

    Google Scholar 

  25. F. H. Stott, G. C. Wood, and J. G. Fountain,Oxid. Met. 14, 31 (1980).

    Google Scholar 

  26. L. V. Mallia and D. J. Young,Oxid. Met. 21, 103 (1984).

    Google Scholar 

  27. N. Belen, P. Tomaszewicz, and D. J. Young,Oxid. Met. 22, 227 (1984).

    Google Scholar 

  28. J. Doychak, J. A. Nesbitt, R. D. Noebe, and R. R. Bowman,Oxid. Met. 38, 45 (1992).

    Google Scholar 

  29. D. E. Alman and N. S. Stoloff, inHigh Temperature Silicides and Refractory Alloys, Mat. Res. Soc. Symp. Proc. Vol. 322, C. L. Briant, J. J. Petrovic, B. P. Bewlay, A. K. Vasudvan, and H. A. Lipsitt, eds. (Materials Research Society, 1994), p. 255.

  30. B. Gleeson, W. H. Cheung, and D. J. Young,Corros. Sci. 35, 923 (1993).

    Google Scholar 

  31. S. Espevik, R. A. Rapp, P. L. Daniel, and J. P. Hirth,Oxid. Met. 20, 37 (1983).

    Google Scholar 

  32. C. A. Barrett and C. E. Lowell,Oxid. Met. 11, 199 (1977).

    Google Scholar 

  33. J. L. González Carrasco, P. Adeva, and M. Abell,Oxid. Met. 33, 1 (1990).

    Google Scholar 

  34. J. A. Nesbitt and R. W. Heckel,Oxid. Met. 29, 75 (1988).

    Google Scholar 

  35. G. P. Wagner and G. Simkovich,Oxid. Met. 27, 157 (1987).

    Google Scholar 

  36. M. E. El Dahshan, J. Stringer, and D. P. Whittle,Cobalt 4, 86 (1974).

    Google Scholar 

  37. V. Nagarajan, I. G. Wright, and J. Stringer, Proc. 12th Int. Plansee Seminar, 1989, p. 333.

  38. I. G. Wright and V. Nagarajan,J. Phys. IV, Colloq. C9, suppl.J. Phys. III 3, 151 (1993).

    Google Scholar 

  39. I. G. Wright, V. Nagarajan, and J. Stringer,Corros. Sci. 35, 841 (1993).

    Google Scholar 

  40. X. L. Li, R. Hillel, F. Teyssandier, S. K. Choi, and F. J. J. Van Loo,Acta Metall. Mater. 40, 3149 (1992).

    Google Scholar 

  41. G. Welsch and A. I. Kahveci, inOxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (TMS, Warrendale, PA, 1988), p. 207.

    Google Scholar 

  42. R. Petkovic-Luton and T. A. Ramanarayanan,Oxid. Met. 34, 381 (1990).

    Google Scholar 

  43. C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  44. W. J. Quaddakers, N. Zheng, A. Gil and H. Nickel, inProgress in the Understanding and Prevention of Corrosion, J. M. Costa and A. D. Mercer, eds. (Inst. of Materials, London, 1993), Vol. 1, p. 770.

    Google Scholar 

  45. R. Durham, B. Gleeson, and D. J. Young, unpublished research, The University of New South Wales, Australia.

  46. M. Castro Rebelo, Y. Niu, F. Rizzo, and F. Gesmundo,Oxid. Met. 43, 561 (1995).

    Google Scholar 

  47. M. J. Monteiro, Y. Niu, F. Rizzo, and F. Gesmundo,Oxid. Met. 43, 527 (1995).

    Google Scholar 

  48. F. Gesmundo, P. Nanni, and D. P. Whittle,J. Electrochem. Soc. 127, 1773 (1980).

    Google Scholar 

  49. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  50. F. Gesmundo, P. Nanni and f. Viani,Proc. 9th Internat. Symp. on Reactivity of Solids (Elsevier, Amsterdam, 1982), Vol. 1, p. 151.

    Google Scholar 

  51. Y. Niu, F. Gesmundo, F. Viani, and D. L. Douglass,Oxid. Met. accepted for publication.

  52. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 31, 209 (1989).

    Google Scholar 

  53. G. Wang, R. Carter, and D. L. Douglass,Oxid. Met. 32, 273 (1989).

    Google Scholar 

  54. Y. Niu, F. Gesmundo, and F. Viani,Corros. Sci. 36, 423 (1994).

    Google Scholar 

  55. Y. Niu, F. Gesmundo, and F. Viani,Corros. Sci. 36, 853 (1994).

    Google Scholar 

  56. R. T. DeHoff,Thermodynamics in Materials Science (McGraw-Hill, New York, 1993), p. 214.

    Google Scholar 

  57. B. Gleeson, D. L. Douglass, and F. Gesmundo,Oxid. Met. 34, 123 (1990).

    Google Scholar 

  58. M. P. Brady, R. J. Hanrahan, and E. D. Verink, inProcessing and Fabrication of Advanced Materials for High Temperature Applications—II, V. A. Ravi and T. S. Srivatsan, eds. (TMS, Warrendale, PA, 1993), p. 419.

    Google Scholar 

  59. M. P. Brady, R. J. Hanrahan, S. P. Randall, and E. D. Verink,Scripta Metall. 28, 115 (1993).

    Google Scholar 

  60. D. Yang and B. Gleeson, unpublished research, The University of New South Wales, Australia.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesmundo, F., Gleeson, B. Oxidation of multicomponent two-phase alloys. Oxid Met 44, 211–237 (1995). https://doi.org/10.1007/BF01046728

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046728

Key Words

Navigation