Skip to main content
Log in

Nondestructive, Rapid Identification of Aluminum Nitride and Internal Alumina Scales on a Heat-Resistant Alloy Using Cathodoluminescence

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A nondestructive method to rapidly identify AlN precipitates and internal Al2O3 scales on Ni–Cr–Al alloy via cathodoluminescence (CL) analysis is proposed. AlN could be instantly distinguished from Al2O3, Cr2O3, and CrN based on the detection of violet luminescence in CL images. Moreover, an Al2O3 scale beneath a surface Cr2O3 scale with the thickness below 3.2 μm can be rapidly identified based on a peak at 695 nm in the CL spectra of the alloy surface with no requirement for a destructive cross-sectional analysis. The exposure time for the CL images and the acquisition time for the CL spectra were within 1 min. Therefore, CL analysis may provide a rapid, nondestructive, analytical method for identifying AlN precipitates and internal Al2O3 scales in heat-resistant alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Hindam and D. P. Whittle, Microstructure, adhesion and growth kinetics of protective scales on metals and alloys. Oxidation of Metals 18, 1982 (245–284).

    Article  CAS  Google Scholar 

  2. F. H. Stott, G. C. Wood, and J. Stringer, The influence of alloying elements on the development and maintenance of protective scales. Oxidation of Metals 44, 1995 (113–145).

    Article  CAS  Google Scholar 

  3. D. J. Young, High Temperature Oxidation and Corrosion of Metals, vol. 1. (Elsevier, Amsterdam, 2016),.

    Google Scholar 

  4. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM International, Materials Park, 2002).

  5. C. Houngniou, S. Chevalier, and J. P. Larpin, High-temperature-oxidation behavior of iron–aluminide diffusion coatings. Oxidation of Metals 65, 2006 (409–439).

    Article  CAS  Google Scholar 

  6. G. Y. Lai, High-Temperature Corrosion and Materials Applications (ASM International, Ohio, 2007).

  7. C. A. C. Sequeira, High Temperature Corrosion: Fundamentals and Engineering, (John Wiley and Sons Inc, Hoboken, 2019).

    Book  Google Scholar 

  8. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys. Corrosion Science 48, 2006 (741–765).

    Article  CAS  Google Scholar 

  9. B. A. Pint, High temperature corrosion of alumina-forming iron, nickel and cobalt-base alloys. in Shreir’s Corrosion, eds. R. A. Cottis, et al. (Elsevier, Amsterdam, 2010), pp. 606–645.

    Chapter  Google Scholar 

  10. J. Klöwer, U. Brill, and M. Rockel, Untersuchungen zum Verhalten von Hochtemperaturwerkstoffen gegenüber Aufstickung. Materials and Corrosion/Werkstoffe und Korrosion 48, 1997 (511–517).

    Article  Google Scholar 

  11. U. Krupp, Nitridation of alloys, in Shreir's Corrosion, eds. R. A. Cottis, et al. (Elsevier, Amsterdam, 2010).

  12. J. Laigo, F. Christien, R. Le Gall, F. Tancret, and J. Furtado, SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys, Materials Characterization 59, 1580–1586 (2008).

  13. S. Imashuku and K. Wagatsuma, Non-destructive evaluation of alumina scale on heat-resistant steels using cathodoluminescence and X-ray-excited optical luminescence. Corrosion Science 154, 2019 (226–230).

    Article  CAS  Google Scholar 

  14. S. Imashuku and K. Wagatsuma, Cathodoluminescence analysis for the nondestructive evaluation of silica scale on an iron-based alloy. Oxidation of Metals 93, 2020 (175–182).

    Article  CAS  Google Scholar 

  15. S. Imashuku and K. Wagatsuma, X-ray-excited optical luminescence imaging for on-site analysis of alumina scale. Oxidation of Metals 94, 2020 (27–36).

    Article  CAS  Google Scholar 

  16. S. Imashuku, W. Hashimoto, and K. Wagatsuma, Nondestructive thickness measurement of silica scale using cathodoluminescence. Spectrochimica Acta Part A 246, 2021 (119022).

    Article  CAS  Google Scholar 

  17. S. Imashuku and K. Wagatsuma, Cathodoluminescence analysis of nonmetallic inclusions of nitrides in steel. Surface and Interface Analysis 51, 2019 (31–34).

    Article  CAS  Google Scholar 

  18. R. Prescott, F. H. Stott, and P. Elliott, Investigations of the degradation of high-temperature alloys in a potentially oxidizing-chloridizing gas mixture. Oxidation of Metals 31, 1989 (145–166).

    Article  CAS  Google Scholar 

  19. H. Buscail, S. Perrier, and C. Josse, Oxidation mechanism of the Inconel 601 alloy at high temperatures. Materials and Corrosion 62, 2011 (416–422).

    Article  CAS  Google Scholar 

  20. S. Imashuku, K. Ono, and K. Wagatsuma, Rapid phase mapping in heat-treated powder mixture of alumina and magnesia utilizing cathodoluminescence. X-Ray Spectrometry 46, 2017 (131–135).

    Article  CAS  Google Scholar 

  21. S. Imashuku, K. Ono, R. Shishido, S. Suzuki, and K. Wagatsuma, Cathodoluminescence analysis for rapid identification of alumina and MgAl2O4 spinel inclusions in steels. Materials Characterization 131, 2017 (210–216).

    Article  CAS  Google Scholar 

  22. S. Imashuku, K. Ono, and K. Wagatsuma, X-ray excited optical luminescence and portable electron probe microanalyzer-cathodoluminescence (EPMA-CL) analyzers for on-line and on-site analysis of nonmetallic inclusions in steel. Microscopy and Microanalysis 23, 2017 (1143–1149).

    Article  CAS  Google Scholar 

  23. S. Imashuku and K. Wagatsuma, Rapid identification of calcium aluminate inclusions in steels using cathodoluminescence analysis. Metallurgical and Materials Transactions B 49B, 2018 (2868–2874).

    Article  Google Scholar 

  24. H. Tsuneda, S. Imashuku, and K. Wagatsuma, Detection of free-lime in steelmaking sag by cathodoluminescence method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan 105, 2019 (30–37).

    Article  Google Scholar 

  25. S. Imashuku and K. Wagatsuma, Simple identification of Al2O3 and MgO·Al2O3 spinel inclusions in steel using X-ray-excited optical luminescence. X-Ray Spectrometry 48, 2019 (522–526).

    Article  CAS  Google Scholar 

  26. S. Imashuku and K. Wagatsuma, Cathodoluminescence analysis of nonmetallic inclusions in steel deoxidized and desulfurized by rare-earth metals (La, Ce, Nd). Metallurgical and Materials Transactions B 51, 2020 (79–84).

    Article  CAS  Google Scholar 

  27. S. Imashuku, H. Tsuneda, and K. Wagatsuma, Rapid and simple identification of free magnesia in steelmaking slag used for road construction using cathodoluminescence. Metallurgical and Materials Transactions B 51, 2020 (28–34).

    Article  Google Scholar 

  28. S. Imashuku, H. Tsuneda, and K. Wagatsuma, Effects of divalent-cation iron and manganese oxides on the luminescence of free lime and free magnesia. Spectrochimica Acta Part A 229, 2020 (117952).

    Article  CAS  Google Scholar 

  29. S. Imashuku and K. Wagatsuma, Rapid identification of rare earth element bearing minerals in ores by cathodoluminescence method. Minerals Engineering 151, 2020 (106317).

    Article  CAS  Google Scholar 

  30. S. Imashuku and K. Wagatsuma, Determination of area fraction of free lime in steelmaking slag using cathodoluminescence and X-ray excited optical luminescence. Metallurgical and Materials Transactions B 51, 2020 (2003–2011).

    Article  CAS  Google Scholar 

  31. S. Imashuku and K. Wagatsuma, X-ray-excited optical luminescence imaging for on-site identification of xenotime. Journal of Geochemical Exploration 225, 2021 (106763).

    Article  CAS  Google Scholar 

  32. S. Imashuku, M. Nagasako, and K. Wagatsuma, Effect of reheating and quenching on the cathodoluminescence intensity of free lime in steelmaking slag. Microscopy and Microanalysis 27, 2021 (484-490).

    Article  CAS  Google Scholar 

  33. S. Imashuku and K. Wagatsuma, Identification of monazite and estimation of its content in ores by cathodoluminescence imaging, Mineral Engineering (2021) (submitted).

  34. K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Deep impurity transitions involving cation vacancies and complexes in AlGaN alloys, Applied Physics Letters 86, 222108 (2005).

  35. T. Schulz, M. Albrecht, K. Irmscher, C. Hartmann, J. Wollweber, and R. Fornari, Ultraviolet luminescence in AlN. Physica Status Solidi B 248, 2011 (1513–1518).

    Article  CAS  Google Scholar 

  36. B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, (Plenum Press, New York, 1990), pp. 151–155.

    Book  Google Scholar 

  37. J. Ponahlo, Cathodoluminescence as a tool in gemstone identification. in Cathodoluminescence in Geosciences, eds. M. Pagel, V. Barbin, P. Blanc and D. Ohnenstetter (Springer, Berlin, 2000), pp. 479–500.

    Chapter  Google Scholar 

  38. M. Gaft, R. Reisfeld, and G. Panczer, Luminescence Spectroscopy of Minerals and Materials, (Springer, Berlin, 2005).

    Google Scholar 

  39. C. M. MacRae and N. C. Wilson, Luminescence database I–minerals and materials. Microscopy and Microanalysis 14, 2008 (184–204).

    Article  CAS  Google Scholar 

  40. P. Y. Hou, Oxidation of metals and alloys, in Shreir's Corrosion, eds. R. A. Cottis, et al. (Elsevier, Amsterdam, 2010).

  41. J. D. Traylor Kruschwitz and W. T. Pawlewicz, Optical and durability properties of infrared transmitting thin films, Applied Optics 36, 2157–2159 (1997).

  42. C. A. Stewart, A. Suzuki, T. M. Pollock, and C. G. Levi, Rapid assessment of oxidation behavior in co-based γ/γ′ alloys. Oxidation of Metals 90, 2018 (485–498).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Hitachi Metals–Materials Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Imashuku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S., Hashimoto, W. & Wagatsuma, K. Nondestructive, Rapid Identification of Aluminum Nitride and Internal Alumina Scales on a Heat-Resistant Alloy Using Cathodoluminescence. Oxid Met 96, 519–529 (2021). https://doi.org/10.1007/s11085-021-10053-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10053-8

Keywords

Navigation