Skip to main content
Log in

Determination of Area Fraction of Free Lime in Steelmaking Slag Using Cathodoluminescence and X-ray Excited Optical Luminescence

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Determining the free lime (f-CaO) content in steelmaking slag is critical for road construction because f-CaO is likely to cause road expansion. Herein, we present a method to determine an area fraction of f-CaO from fractions of illuminated areas related to f-CaO in cathodoluminescence (CL) or X-ray excited optical luminescence (XEOL) image of industrial steelmaking slag, which is simpler and quicker than the commonly employed ethylene glycol extraction method. A heat-treatment in which the industrial steelmaking slag was quenched from 1000 °C was needed to obtain intense luminescence from f-CaO, which originated from a peak at 600 nm. Other mineral phases, such as Ca2SiO4, free magnesia, and 2CaO·Al2O3·SiO2, were distinguishable from f-CaO from their luminescent colors. When we analyzed three types of industrial steelmaking slag with different f-CaO contents, the order of the fractions of the illuminated areas originating from f-CaO in the CL images was consistent with that of the f-CaO content measured applying the ethylene glycol extraction method. The average exposure times it took the CL and XEOL images to detect the luminescence from f-CaO were 5 and 30 seconds, respectively. In particular, acquiring XEOL images is promising for on-site analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. S.-Y. Pan, R. Adhikari, Y.-H. Chen, P. Li and P.-C. Chiang: J. Clean Prod. 2016, vol. 137, pp. 617-631.

    Article  CAS  Google Scholar 

  2. 2. İ. Yüksel: Environ. Dev. Sustain. 2016, vol. 19, pp. 369-384.

    Article  Google Scholar 

  3. 3. Y. Jiang, T.-C. Ling, C. Shi and S.-Y. Pan: Resour. Conserv. Recycl. 2018, vol. 136, pp. 187-197.

    Article  Google Scholar 

  4. 4. A. Panis: Bull. Eng. Geol. Environ. 1984, vol. 30, pp. 449-451.

    Google Scholar 

  5. 5. G. Wang, Y. Wang and Z. Gao: J. Hazard. Mater. 2010, vol. 184, pp. 555-560.

    Article  CAS  Google Scholar 

  6. 6. C. Kambole, P. Paige-Green, W.K. Kupolati, J.M. Ndambuki and A.O. Adeboje: Constr. Build. Mater. 2017, vol. 148, pp. 618-631.

    Article  CAS  Google Scholar 

  7. 7. S. Chatterji: Cem. Concr. Res. 1995, vol. 25, pp. 51-56.

    Article  CAS  Google Scholar 

  8. 8. L.F. Amaral, I.R. Oliveira, P. Bonadia, R. Salomão and V.C. Pandolfelli: Ceram. Int. 2011, vol. 37, pp. 1537-1542.

    Article  CAS  Google Scholar 

  9. L.M. Juckes: Trans. Inst. Min. Metall. Sect. C 2003, vol. 112, pp. 177-197.

    Google Scholar 

  10. 10. D.R. MacPherson and L.R. Forbrich: Ind. Eng. Chem. Anal. Ed. 1937, vol. 9, pp. 451-453.

    Article  CAS  Google Scholar 

  11. 11. M.P. Javellana and I. Jawed: Cem. Concr. Res. 1982, vol. 12, pp. 399-403.

    Article  CAS  Google Scholar 

  12. 12. M. Bartl and D. Pekárek: Analyst 1972, vol. 97, pp. 848-853.

    Article  CAS  Google Scholar 

  13. 13. J. Vaverka and K. Sakurai: ISIJ Int. 2014, vol. 54, pp. 1334-1337.

    Article  CAS  Google Scholar 

  14. 14. K. Tanaka, M. Narita and K. Watanabe: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 2014, vol. 100, pp. 1386-1390.

    Article  CAS  Google Scholar 

  15. 15. S. Michikawa, A. Ono and H. Eba: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 2016, vol. 102, pp. 623-629.

    Article  Google Scholar 

  16. 16. Y. Fujioka, M. Aimoto and M. Nishifuji: CAMP-ISIJ 2009, vol. 22, p. 683.

    Google Scholar 

  17. 17. M. Kato, K. Tsukagoshi, M. Aimoto, S. Saito and M. Shibukawa: ISIJ Int. 2018, vol. 58, pp. 1834-1839.

    Article  CAS  Google Scholar 

  18. 18. M. Kato, T. Hari, S. Saito and M. Shibukawa: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 2014, vol. 100, pp. 340-345.

    Article  CAS  Google Scholar 

  19. 19. H. Tsuneda, S. Imashuku and K. Wagatsuma: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 2019, vol. 105, pp. 30-37.

    Article  Google Scholar 

  20. Chemical composition of iron and steel slag (Nippon Slag Association Web, 2020), http://www.slg.jp/e/slag/character.html Accessed 15 June 2020.

  21. 21. S. Imashuku, K. Ono and K. Wagatsuma: X-Ray Spectrom. 2017, vol. 46, pp. 131-135.

    Article  CAS  Google Scholar 

  22. 22. S. Imashuku, K. Ono, R. Shishido, S. Suzuki and K. Wagatsuma: Mater. Charact. 2017, vol. 131, pp. 210-216.

    Article  CAS  Google Scholar 

  23. 23. S. Imashuku, K. Ono and K. Wagatsuma: Microsc. Microanal. 2017, vol. 23, pp. 1143-1149.

    Article  CAS  Google Scholar 

  24. 24. S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B 2018, vol. 49B, pp. 2868-2874.

    Article  CAS  Google Scholar 

  25. 25. S. Imashuku and K. Wagatsuma: Surf. Interface Anal. 2019, vol. 51, pp. 31-34.

    Article  CAS  Google Scholar 

  26. 26. S. Imashuku and K. Wagatsuma: X-Ray Spectrom. 2019, vol. 48, pp. 522-526.

    Article  CAS  Google Scholar 

  27. 27. S. Imashuku, H. Tsuneda and K. Wagatsuma: Metall. Mater. Trans. B 2020, vol. 51B, pp. 28-34.

    Google Scholar 

  28. 28. S. Imashuku and K. Wagatsuma: Metall. Mater. Trans. B 2020, vol. 51B, pp. 79-84.

    Article  CAS  Google Scholar 

  29. 29. S. Imashuku and K. Wagatsuma: Oxid. Met. 2019, vol. 93, pp. 175-182.

    Article  CAS  Google Scholar 

  30. 30. S. Imashuku, H. Tsuneda and K. Wagatsuma: Spectrochim. Acta, Part A 2020, vol. 229, p. 117952.

    Article  CAS  Google Scholar 

  31. 31. S. Imashuku and K. Wagatsuma: Corros. Sci. 2019, vol. 154, pp. 226-230.

    Article  CAS  Google Scholar 

  32. 32. S. Imashuku and K. Wagatsuma: Miner. Eng. 2020, vol. 151, p. 106317.

    Article  CAS  Google Scholar 

  33. S. Imashuku and K. Wagatsuma: Oxid. Met. 2020, vol. 94, pp. 27–36.

    Article  CAS  Google Scholar 

  34. 34. L. Feng, Z. Hao, X. Zhang, L. Zhang, G. Pan, Y. Luo, L. Zhang, H. Zhao and J. Zhang: Dalton Trans. 2016, vol. 45, pp. 1539-45.

    Article  CAS  Google Scholar 

  35. D. Habermann, R.D. Neuser, and D.K. Richter: in Cathodoluminscence in Geosciences, M. Pagel, V. Barbin, P. Blanc, and D. Ohnenstetter, eds., Springer, Berlin, 2000, pp. 331–58.

  36. 36. H. Suito, T. Yokomaku, Y. Hayashida and Y. Takahashi: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 1977, vol. 63, pp. 2316-2325.

    Article  CAS  Google Scholar 

  37. 37. A. Niida, K. Okohira, A. Tanaka and T. Kai: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 1983, vol. 69, pp. 42-50.

    Article  CAS  Google Scholar 

  38. 38. M. Gautier, J. Poirier, F. Bodénan, G. Franceschini and E. Véron: Int. J. Miner. Process. 2013, vol. 123, pp. 94-101.

    Article  CAS  Google Scholar 

  39. 39. J. Zelić, D. Rušić and R. Krstulović: J. Therm. Anal. Calorim. 2002, vol. 67, pp. 613-622.

    Article  Google Scholar 

  40. 40. W. Fix, H. Heymann and R. Heinke: J. Am. Ceram. Soc. 1969, vol. 52, pp. 346-347.

    Article  CAS  Google Scholar 

  41. 41. H. Suito, Y. Hayashida and Y. Takahashi: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 1977, vol. 63, pp. 1252-1259.

    Article  CAS  Google Scholar 

  42. 42. R. Inoue and H. Suito: ISIJ Int. 2006, vol. 46, pp. 174-179.

    Article  CAS  Google Scholar 

  43. 43. Z. Mao, Z. Lu, J. Chen, B.D. Fahlman and D. Wang: Journal of Materials Chemistry C 2015, vol. 3, pp. 9454-9460.

    Article  CAS  Google Scholar 

  44. J. Götze: in Cathodoluminscence in Geosciences, M. Pagel, V. Barbin, P. Blanc, and D. Ohnenstetter, eds., Springer, Berlin, 2000.

  45. 45. R. Inoue and H. Suito: ISIJ Int. 1995, vol. 35, pp. 272-279.

    Article  CAS  Google Scholar 

  46. 46. B.G. Yacobi and D.B. Holt: In Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press: New York, 1990, pp 151-155.

    Book  Google Scholar 

  47. 47. V.D. Eisenhüttenleute: Slag Atlas, 2nd ed. Verlag Stahleisen, Düsseldorf, 1995.

    Google Scholar 

  48. 48. T.A. Vu, J. Götze, K. Burkhardt, J. Ulbricht and D. Habermann: Int. Ceram. 1998, vol. 47, pp. 164-167.

    CAS  Google Scholar 

  49. 49. M. Karakus, M.D. Crites and M.E. Schlesinger: J. Microsc. 2000, vol. 200, pp. 50-58.

    Article  CAS  Google Scholar 

  50. 50. C.M. MacRae and N.C. Wilson: Microsc. Microanal. 2008, vol. 14, pp. 184-204.

    Article  CAS  Google Scholar 

  51. 51. K. Kanehashi and M. Aimoto: Tetsu To Hagane-J. Iron Steel Inst. Jpn. 2013, vol. 99, pp. 543-551.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Steel Foundation for Environmental Protection Technology. We would like to thank Nippon Steel Corp. and JFE Steel Corp for the supplies of steelmaking slag samples and for the determination of their f-CaO contents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Imashuku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 31, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S., Wagatsuma, K. Determination of Area Fraction of Free Lime in Steelmaking Slag Using Cathodoluminescence and X-ray Excited Optical Luminescence. Metall Mater Trans B 51, 2003–2011 (2020). https://doi.org/10.1007/s11663-020-01927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01927-4

Navigation