Skip to main content
Log in

Rapid Determination of α- and θ-Alumina Concentrations in Heat-Resistant Alloys Using Cathodoluminescence Analysis

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Among oxide scales, α-alumina (α-Al2O3) is the most stable and protective oxide against high-temperature oxidation and corrosion. α-Al2O3 forms on heat-resistant alloys by replacing a metastable θ-Al2O3, which provides poor oxidation resistance. Thus, determining the concentration of θ-Al2O3 is critical for evaluating the performance of heat-resistant alloys. Herein, the author developed a method to determine the concentrations of θ-Al2O3 and α-Al2O3 in oxide scales on the surface of heat-resistant alloys from the emission intensities of the peaks of α-Al2O3 (694.2 nm) and θ-Al2O3 (683.4 nm) observed in cathodoluminescence (CL) spectra. The concentrations of θ-Al2O3 and α-Al2O3 on β-NiAl heated at 1000 °C agreed with those estimated from the peak intensities of α-Al2O3 and θ-Al2O3 in the XRD patterns. This method can also be applied to areas ranging from the millimeter to micrometer scale and provide a short acquisition time (< 10 s), enabling the rapid determination of the durability and performance of heat-resistant alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Hindam and D. P. Whittle, Microstructure, adhesion and growth kinetics of protective scales on metals and alloys. Oxidation of Metals 18, 1982 (245–284).

    CAS  Google Scholar 

  2. F. H. Stott, G. C. Wood, and J. Stringer, The influence of alloying elements on the development and maintenance of protective scales. Oxidation of Metals 44, 1995 (113–145).

    CAS  Google Scholar 

  3. D. J. Young, High Temperature Oxidation and Corrosion of Metals, vol. 1. (Elsevier, Amsterdam, 2016),.

    Google Scholar 

  4. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, (ASM International, Materials Park, 2002).

    Google Scholar 

  5. C. Houngniou, S. Chevalier, and J. P. Larpin, High-temperature-oxidation behavior of iron–aluminide diffusion coatings. Oxidation of Metals 65, 2006 (409–439).

    CAS  Google Scholar 

  6. G. Y. Lai, High-Temperature Corrosion and Materials Applications, (ASM International, Ohio, 2007).

    Google Scholar 

  7. C. A. C. Sequeira, High Temperature Corrosion: Fundamentals and Engineering, (John Wiley and Sons, Inc, Hoboken, 2019).

    Google Scholar 

  8. Z. G. Zhang, F. Gesmundo, P. Y. Hou, et al., Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys. Corrosion Science 48, 2006 (741–765).

    CAS  Google Scholar 

  9. B. A. Pint, High Temperature Corrosion of Alumina-forming Iron, Nickel and Cobalt-base Alloys. in Shreir’s Corrosion, eds. R. A. Cottis, et al. (Elsevier, Amsterdam, 2010), pp. 606–645.

    Google Scholar 

  10. G. C. Rybicki and J. L. Smialek, Effect of the θ-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr. Oxidation of Metals 31, 1989 (275–304).

    CAS  Google Scholar 

  11. M. W. Brumm and H. J. Grabke, The oxidation behaviour of NiAl–I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl–Cr alloys. Corrosion Science 33, 1992 (1677–1690).

    CAS  Google Scholar 

  12. A. Andoh, S. Taniguchi, and T. Shibata, Phase transformation of Al2O3 scales formed on Al-deposited Fe–Cr–Al alloy foil. Tetsu To Hagane Journal of the Iron and Steel Institute of Japan 83, 1997 (205–210).

    CAS  Google Scholar 

  13. J. Doychak, J. L. Smialek, and T. E. Mitchell, Transient oxidation of single-crystal β-NiAl. Metallurgical Transactions A 20, 1989 (499–518).

    Google Scholar 

  14. A. Andoh, S. Taniguchi, and T. Shibata, TEM observation of phase transformations of alumina scales formed on Al-deposited Fe–Cr–Al foils. Materials Science Forum 369–372, 2001 (303–310).

    Google Scholar 

  15. G. Pauletto, A. Vaccari, G. Groppi, et al., FeCrAl as a catalyst support. Oxidation of Metals 120, 2020 (7516–7550).

    CAS  Google Scholar 

  16. C. A. Stewart, A. Suzuki, T. M. Pollock, et al., Rapid assessment of oxidation behavior in Co-based γ/γ′ alloys. Oxidation of Metals 90, 2018 (485–498).

    CAS  Google Scholar 

  17. A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals, (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  18. B. G. Yacobi and D. B. Holt, Cathodoluminescence scanning electron microscopy of semiconductors. Journal of Applied Physics 59, 1986 (R1–R24).

    CAS  Google Scholar 

  19. V. I. Petrov, Cathodoluminescence scanning microscopy. Physica Status Solidi (a) 133, 1992 (189–230).

    CAS  Google Scholar 

  20. C. M. Parish and P. E. Russell, Scanning Cathodoluminescence Microscopy. in Advances in Imaging and Electron Physics, vol. 147, ed. P. Hawkes (Elsevier, Amsterdam, 2007), pp. 1–135.

    Google Scholar 

  21. S. Imashuku and K. Wagatsuma, Non-destructive evaluation of alumina scale on heat-resistant steels using cathodoluminescence and X-ray-excited optical luminescence. Corrosion Science 154, 2019 (226–230).

    CAS  Google Scholar 

  22. S. Imashuku and K. Wagatsuma, X-ray-excited optical luminescence imaging for on-site analysis of alumina scale. Oxidation of Metals 94, 2020 (27–36).

    CAS  Google Scholar 

  23. S. Imashuku and K. Wagatsuma, Cathodoluminescence analysis for the nondestructive evaluation of silica scale on an iron-based alloy. Oxidation of Metals 93, 2020 (175–182).

    CAS  Google Scholar 

  24. S. Imashuku, W. Hashimoto, and K. Wagatsuma, Nondestructive thickness measurement of silica scale using cathodoluminescence. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 246, 2021 119022.

    CAS  Google Scholar 

  25. S. Imashuku, M. Fukumoto, K. Nakajima, et al., Characterization of α-Al2O3 in structural isomers of alumina formed by oxidation of Fe–Cr–Al alloys. ISIJ International 62, 2022 (1880–1885).

    Google Scholar 

  26. S. Imashuku, W. Hashimoto, and K. Wagatsuma, Nondestructive, rapid identification of aluminum nitride and internal alumina scales on a heat-resistant alloy using cathodoluminescence. Oxidation of Metals 96, 2021 (519–529).

    CAS  Google Scholar 

  27. S. Imashuku, Determination of the maximum surface chromia thickness for the nondestructive identification of internal alumina scales on a heat-resistant alloy using cathodoluminescence. High Temperature Corrosion of Materials (2023):Submitted.

  28. S. Imashuku, Nondestructive identification of internal α-alumina scales on heat-resistant Ni–Al alloys based on cathodoluminescence spectra. ISIJ International (2023):in press.

  29. R. Prescott, D. F. Mitchell, M. J. Graham, et al., Oxidation mechanisms of β-NiAl + Zr determined by SIMS. Corrosion Science 37, 1995 (1341–1364).

    CAS  Google Scholar 

  30. S. Imashuku, H. Tsuneda, and K. Wagatsuma, Rapid and simple identification of free magnesia in steelmaking slag used for road construction using cathodoluminescence. Metallurgical and Materials Transactions B 51, 2020 (27–34).

    CAS  Google Scholar 

  31. S. Imashuku and K. Wagatsuma, Identification of monazite and estimation of its content in ores by cathodoluminescence imaging. Minerals Engineering 173, 2021 107228.

    CAS  Google Scholar 

  32. S. Imashuku and K. Wagatsuma, Scanning electron microscopy-cathodoluminescence imaging of industrial steelmaking slag for identifying and determining the free magnesia content. Metallurgical and Materials Transactions B 53, 2022 (3459–3468).

    CAS  Google Scholar 

  33. S. Imashuku, Cathodoluminescence imaging for rapid identification of low-melting CaO–MgO–SiO2 phases in MgO-based refractories involving the steelmaking process. Journal of the European Ceramic Society 42, 2022 (7328–7334).

    CAS  Google Scholar 

  34. D. Wolff, Visser: Absolute intensities-Outline of Recommended Practice. Technique for obtaining absolute intensities with internal standard, in TNO ENT. H, (1964), pp. 202–204.

  35. P. M. de Woolf and J. W. Visser, Absolute intensities—outline of a recommended practice. Powder Diffr 3, 2013 (202–204).

    Google Scholar 

  36. J. Ponahlo, Cathodoluminescence as a Tool in Gemstone Identification. in Cathodoluminscence in Geosciences, eds. M. Pagel, V. Barbin, P. Blanc and D. Ohnenstetter (Springer, Berlin, 2000), pp. 479–500.

    Google Scholar 

  37. M. Gaft, R. Reisfeld, and G. Panczer, Luminescence Spectroscopy of Minerals and Materials, (Springer, Berlin, 2005).

    Google Scholar 

  38. C. M. MacRae and N. C. Wilson, Luminescence database I—minerals and materials. Microscopy and Microanalysis 14, 2008 (184–204).

    CAS  Google Scholar 

  39. C. Guguschev, J. Gotze, and M. Gobbels, Cathodoluminescence microscopy and spectroscopy of synthetic ruby crystals grown by the optical floating zone technique. American Mineralogist 95, 2010 (449–455).

    CAS  Google Scholar 

  40. H. H. Kusuma, B. Astuti, and Z. Ibrahim, Absorption and emission properties of ruby (Cr:Al2O3) single crystal. Journal of Physics: Conference Series 1170, 2019 012054.

    CAS  Google Scholar 

  41. Q. Wen, D. M. Lipkin, and D. R. Clarke, Luminescence characterization of chromium-containing θ-alumina. Journal of the American Ceramic Society 81, 1998 (3345–3348).

    CAS  Google Scholar 

  42. L. Shen, C. Hu, S. Zhou, et al., Phase-dependent photoluminescence behavior of Cr-doped alumina phosphors. Optical Materials 35, 2013 (1268–1272).

    CAS  Google Scholar 

  43. A. Rastorguev, M. Baronskiy, A. Zhuzhgov, et al., Local structure of low-temperature γ-Al2O3 phases as determined by the luminescence of Cr3+ and Fe3+. RSC Advances 5, 2015 (5686–5694).

    CAS  Google Scholar 

  44. D. M. Lipkin and D. R. Clarke, Measurement of the stress in oxide scales formed by oxidation of alumina-forming alloys. Oxidation of Metals 45, 1996 (267–280).

    CAS  Google Scholar 

  45. R. J. Christensen, D. M. Lipkin, D. R. Clarke, et al., Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+ piezospectroscopy. Appl Phys Lett. 69, 1996 (3754–3756).

    CAS  Google Scholar 

  46. Y. H. Sohn, K. Vaidyanathan, M. Ronski, et al., Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings: II. Evolution of photo-stimulated luminescence. Surface and Coatings Technology 146–147, 2001 (102–109).

    Google Scholar 

  47. D. B. Hovis and A. H. Heuer, Confocal photo-stimulated microspectroscopy (CPSM)—residual stress measurements in Al2O3 using confocal microscopy. Scripta Materialia 53, 2005 (347–349).

    CAS  Google Scholar 

  48. L. Qiu, F. Yang, W. Zhang, et al., Effect of Al content on the lifetime of thermally grown oxide formed on Ni–Al alloys after isothermal oxidation. Corrosion Science 89, 2014 (13–20).

    CAS  Google Scholar 

  49. C. Nordhorn, R. Mücke, K. A. Unocic, et al., Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats. Surface and Coatings Technology 258, 2014 (608–614).

    CAS  Google Scholar 

  50. Q. Ma and D. R. Clarke, Stress measurement in single-crystal and polycrystalline ceramics using their optical fluorescence. Journal of the American Ceramic Society 76, 1993 (1433–1440).

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for the present study was provided by JSPS KAKENHI Grant Number 22H01837. The author thanks to Prof. Xiao Xu (Tohoku University) for the preparation of β-NiAl rod.

Author information

Authors and Affiliations

Authors

Contributions

SI wrote the main manuscript text, prepared all figures, and reviewed the manuscript.

Corresponding author

Correspondence to Susumu Imashuku.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S. Rapid Determination of α- and θ-Alumina Concentrations in Heat-Resistant Alloys Using Cathodoluminescence Analysis. High Temperature Corrosion of mater. 100, 145–156 (2023). https://doi.org/10.1007/s11085-023-10178-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10178-y

Keywords

Navigation