Skip to main content
Log in

Determination of the Maximum Surface Chromia Thickness for the Nondestructive Identification of Internal Alumina Scales on a Heat-resistant Alloy Using Cathodoluminescence

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

To develop a nondestructive analytical method for identifying internal α-Al2O3 scales formed in heat-resistant alloys, the maximum thickness of surface Cr2O3 scales for identifying internal α-Al2O3 scales via cathodoluminescence (CL) spectroscopy was estimated using integral intensity of CL peak at 695 nm (R1-R2 doublet) for Cr2O3 film-deposited sapphires and α-Al2O3 scales formed on the surface of Fe-Cr-Al alloys. The estimated maximum Cr2O3 thickness was validated by measuring the intensities of the R1-R2 doublet for Ni-25Cr-5Al alloys heated at 1000 °C under oxygen. Therefore, internal α-Al2O3 scales can be identified nondestructively by acquiring the surface CL spectra up to ~ 3-µm surface Cr2O3 thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Hindam, D.P. Whittle, Microstructure, adhesion and growth kinetics of protective scales on metals and alloys, Oxid. Met., 18 (1982) 245–284.

    Article  CAS  Google Scholar 

  2. F.H. Stott, G.C. Wood, J. Stringer, The influence of alloying elements on the development and maintenance of protective scales, Oxid. Met., 44 (1995) 113–145.

    Article  CAS  Google Scholar 

  3. D.J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam, 2016.

    Google Scholar 

  4. A.S. Khanna, Introduction to high temperature oxidation and corrosion, ASM International, Materials Park, 2002.

    Google Scholar 

  5. C. Houngniou, S. Chevalier, J.P. Larpin, High-Temperature-Oxidation Behavior of Iron–Aluminide Diffusion Coatings, Oxid. Met., 65 (2006) 409–439.

    Article  CAS  Google Scholar 

  6. G.Y. Lai, High-Temperature Corrosion and Materials Applications, ASM International, Ohio, 2007.

    Book  Google Scholar 

  7. C.A.C. Sequeira, High temperature corrosion: fundamentals and engineering, John Wiley and Sons, Inc, Hoboken, 2019.

    Book  Google Scholar 

  8. Z.G. Zhang, F. Gesmundo, P.Y. Hou, Y. Niu, Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys, Corros. Sci., 48 (2006) 741–765.

    Article  CAS  Google Scholar 

  9. B.A. Pint, High Temperature Corrosion of Alumina-forming Iron, Nickel and Cobalt-base Alloys, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.) Shreir’s Corrosion, Elsevier, Amsterdam, 2010, pp. 606–645.

    Chapter  Google Scholar 

  10. P.Y. Hou, Oxidation of Metals and Alloys, in: R.A. Cottis, M.J. Graham, R. Lindsay, S.B. Lyon, J.A. Richardson, J.D. Scantlebury, F.H. Stott (Eds.) Shreir’s Corrosion, Elsevier, Amsterdam, 2010.

    Google Scholar 

  11. R.J. Christensen, D.M. Lipkin, D.R. Clarke, K. Murphy, Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3+ piezospectroscopy, Appl. Phys. Lett., 69 (1996) 3754–3756.

    Article  CAS  Google Scholar 

  12. C.J. Metting, J.K. Bunn, E. Underwood, S. Smoak, J. Hattrick-Simpers, Combinatorial approach to turbine bond coat discovery, ACS Comb Sci, 15 (2013) 419–424.

    Article  CAS  Google Scholar 

  13. L. Qiu, F. Yang, W. Zhang, X. Zhao, P. Xiao, Effect of Al content on the lifetime of thermally grown oxide formed on Ni–Al alloys after isothermal oxidation, Corros. Sci., 89 (2014) 13–20.

    Article  CAS  Google Scholar 

  14. C.A. Stewart, A. Suzuki, T.M. Pollock, C.G. Levi, Rapid Assessment of Oxidation Behavior in Co-Based γ/γ′ Alloys, Oxid. Met., 90 (2018) 485–498.

    Article  CAS  Google Scholar 

  15. S. Imashuku, K. Wagatsuma, Non-destructive evaluation of alumina scale on heat-resistant steels using cathodoluminescence and X-ray-excited optical luminescence, Corros. Sci., 154 (2019) 226–230.

    Article  CAS  Google Scholar 

  16. S. Imashuku, K. Wagatsuma, Cathodoluminescence Analysis for the Nondestructive Evaluation of Silica Scale on an Iron-Based Alloy, Oxid. Met., 93 (2020) 175–182.

    Article  CAS  Google Scholar 

  17. S. Imashuku, K. Wagatsuma, X-ray-Excited Optical Luminescence Imaging for On-Site Analysis of Alumina Scale, Oxid. Met., 94 (2020) 27–36.

    Article  CAS  Google Scholar 

  18. S. Imashuku, W. Hashimoto, K. Wagatsuma, Nondestructive thickness measurement of silica scale using cathodoluminescence, Spectrochim. Acta A, 246 (2021) 119022.

    Article  CAS  Google Scholar 

  19. S. Imashuku, W. Hashimoto, K. Wagatsuma, Nondestructive, Rapid Identification of Aluminum Nitride and Internal Alumina Scales on a Heat-Resistant Alloy Using Cathodoluminescence, Oxid. Met., 96 (2021) 519–529.

    Article  CAS  Google Scholar 

  20. S. Imashuku, M. Fukumoto, K. Nakajima, S. Suzuki, Characterization of α-Al2O3 in structural isomers of alumina formed by oxidation of Fe-Cr-Al alloys, ISIJ Int., 62 (2022) 1881–1885.

  21. S. Imashuku, Rapid Determination of α- and θ-Alumina Concentrations in Heat-Resistant Alloys Using Cathodoluminescence Analysis, High. Temp. Corros. Mater., 100 (2023) 145–156.

    Article  CAS  Google Scholar 

  22. S. Imashuku, H. Tsuneda, K. Wagatsuma, Rapid and simple identification of free magnesia in steelmaking slag used for road construction using cathodoluminescence, Metall. Mater. Trans. B, 51 (2020) 27–34.

    Article  CAS  Google Scholar 

  23. J. Ponahlo, Cathodoluminescence as a Tool in Gemstone Identification, in: M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter (Eds.) Cathodoluminscence in Geosciences, Springer, Berlin, 2000, pp. 479–500.

    Chapter  Google Scholar 

  24. M. Gaft, R. Reisfeld, G. Panczer, Luminescence Spectroscopy of Minerals and Materials, Springer, Berlin, 2005.

    Google Scholar 

  25. C.M. MacRae, N.C. Wilson, Luminescence database I–minerals and materials, Microsc. Microanal., 14 (2008) 184–204.

    Article  CAS  Google Scholar 

  26. S. Imashuku, H. Narita, K. Wagatsuma, Investigation of emission lines for in-situ elemental analysis of Cu–Zn films deposited by sputtering, Spectrochim. Acta B, 194 (2022) 106457.

    Article  CAS  Google Scholar 

  27. S. Imashuku, K. Ono, R. Shishido, S. Suzuki, K. Wagatsuma, Cathodoluminescence analysis for rapid identification of alumina and MgAl2O4 spinel inclusions in steels, Mater. Charact., 131 (2017) 210–216.

    Article  CAS  Google Scholar 

  28. S. Imashuku, K. Wagatsuma, Determination of Area Fraction of Free Lime in Steelmaking Slag Using Cathodoluminescence and X-ray Excited Optical Luminescence, Metall. Mater. Trans. B, 51 (2020) 2003–2011.

    Article  CAS  Google Scholar 

  29. S. Imashuku, K. Wagatsuma, Identification of monazite and estimation of its content in ores by cathodoluminescence imaging, Miner. Eng., 173 (2021) 107228.

    Article  CAS  Google Scholar 

  30. S. Imashuku, Identification of MgO·Al2O3 Spinel on MgO Refractory for Aluminum Deoxidation Process of Stainless Steel Using Cathodoluminescence and X-ray Excited Optical Luminescence Imaging, Metall. Mater. Trans. B, 53 (2022) 190–197.

    Article  CAS  Google Scholar 

  31. S. Imashuku, K. Wagatsuma, Scanning Electron Microscopy–Cathodoluminescence Imaging of Industrial Steelmaking Slag for Identifying and Determining the Free magnesia Content, Metall. Mater. Trans. B, 53 (2022) 3459–3468.

    Article  CAS  Google Scholar 

  32. S. Imashuku, Cathodoluminescence imaging for rapid identification of low-melting CaO–MgO–SiO2 phases in MgO-based refractories involving the steelmaking process, J. Eur. Ceram. Soc., 42 (2022) 7328–7334.

    Article  CAS  Google Scholar 

  33. B.G. Yacobi, D.B. Holt, in: Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, New York, 1990, pp. 151–155.

    Book  Google Scholar 

  34. J.D. Traylor Kruschwitz, W.T. Pawlewicz, Optical and durability properties of infrared transmitting thin films, Appl Opt, 36 (1997) 2157–2159.

    Article  CAS  Google Scholar 

  35. J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lishin, L. Sawyer, J. Micheal, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Springer Science, New York, 2003.

    Book  Google Scholar 

Download references

Funding

Financial support for the present study was provided by JSPS KAKENHI Grant Number 22H01837.

Author information

Authors and Affiliations

Authors

Contributions

Susumu Imashuku wrote the main manuscript text and reviewed it.

Corresponding author

Correspondence to Susumu Imashuku.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S. Determination of the Maximum Surface Chromia Thickness for the Nondestructive Identification of Internal Alumina Scales on a Heat-resistant Alloy Using Cathodoluminescence. High Temperature Corrosion of mater. 101, 79–90 (2024). https://doi.org/10.1007/s11085-023-10217-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10217-8

Keywords

Navigation