Skip to main content
Log in

Oxidation and Nitridation Behavior of Cr–Si Alloys in Air at 1473 K

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature oxidation and nitridation behavior of pure chromium and four Cr–Si alloys (0 < Si < 25 at%) with single phase solid solution Cr(Si), single phase Cr3Si silicide, and two-phase Cr–Cr3Si structures were studied in synthetic air at 1473 K for up to 1000 h. Thermogravimetic analysis of the oxidation kinetics showed that the addition of Si significantly influences the growth and volatilization rate of the oxide scale. The stability of oxides and nitrides in the Cr–O–N and Cr–Si–O–N system were studied. Based on the microstructural evolution of substrate alloys with different silicon content the underlying mechanisms of internal nitridation are discussed. Results showed that addition of only 3 at% Si significantly improved the oxidation and nitridation resistance. Higher Si additions further improved the properties as the single phase Cr3Si silicide remains stable at higher nitrogen partial pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Takeyama and C. T. Liu, Materials Science and Engineering: A 132, 61 (1991).

    Article  Google Scholar 

  2. M. P. Brady, P. F. Tortorelli and L. R. Walker, Materials at High Temperatures 17, 235 (2000).

    Article  Google Scholar 

  3. M. P. Brady, I. G. Wright and B. Gleeson, JOM 52, 16 (2000).

    Article  Google Scholar 

  4. A. Soleimani-Dorcheh, W. Donner and M. C. Galetz, Materials and Corrosion 2014. doi:10.1002/maco.201307423.

    Google Scholar 

  5. Y. Gu, H. Harada and Y. Ro, JOM Journal of the Minerals, Metals and Materials Society 56, 28 (2004).

    Article  Google Scholar 

  6. H. Johansen and G. Asai, Journal of The Electrochemical Society 101, 604 (1954).

    Article  Google Scholar 

  7. D.M. Scruggs, US PATENTS, (1965), Ch.3175279.

  8. L. Royer, X. Ledoux, S. Mathieu and P. Steinmetz, Oxidation of Metals 74, 79 (2010).

    Article  Google Scholar 

  9. J. Ma, Y. Gu, L. Shi, L. Chen, Z. Yang and Y. Qian, Journal of Alloys and Compounds 375, 249 (2004).

    Article  Google Scholar 

  10. S. Okada, T. Shishido, K. Yubuta and T. Mori, Pacific Science Review 13, 33 (2011).

    Google Scholar 

  11. H. Okamoto, Journal of Phase Equilibria and Diffusion 22, 593 (2001).

    Article  Google Scholar 

  12. V. M. Chad, M. I. S. T. Faria, G. C. Coelho, C. A. Nunes and P. A. Suzuki, Materials Characterization 59, 74 (2008).

    Article  Google Scholar 

  13. H. Baker and H. Okamoto, Alloy Phase Diagrams 3, 2 (1992).

    Google Scholar 

  14. H. Bei, E. P. George and G. M. Pharr, Intermetallics 11, 283 (2003).

    Article  Google Scholar 

  15. A. Soleimani-Dorcheh and M. C. Galetz, Metallurgical and Materials Transactions A 45, 1639 (2014).

    Article  Google Scholar 

  16. W. C. Hagel, Trans ASM 56, 583 (1963).

    Google Scholar 

  17. D. Caplan and M. Cohen, Journal of The Electrochemical Society 108, 438 (1961).

    Article  Google Scholar 

  18. K. P. Lillerud and P. Kofstad, Oxidation of Metals 17, 195 (1982).

    Article  Google Scholar 

  19. E. A. Gulbransen and K. F. Andrew, Journal of The Electrochemical Society 104, 334 (1957).

    Article  Google Scholar 

  20. K. P. Lillerud and P. Kofstad, Journal of The Electrochemical Society 127, 2397 (1980).

    Article  Google Scholar 

  21. J. E. Croll and G. R. Wallwork, Oxidation of Metals 4, 121 (1972).

    Article  Google Scholar 

  22. H. Taimatsu, Journal of The Electrochemical Society 146, 3686 (1999).

    Article  Google Scholar 

  23. K. Schwerdtfeger, Transactions of the Metallurgical Society of AIME 239, 1432 (1968).

    Google Scholar 

  24. P. Steinmetz, S. Mathieu and L. Royer, C, (Trans Tech Publ, Liebaut, 2008).

    Google Scholar 

  25. M. Schütze, D. R. Holmes and R. B. Waterhouse, Protective oxide scales and their breakdown, (John Wiley and Sons Ltd, The Institute of Corrosion, England, 1997).

  26. P. Kofstad, High Temperature Corrosion, (Elsevier Applied Science, UK, 1988).

  27. Y. S. Touloukian, R. K. Kirby, R. E. Taylor and P. D. Desai, Thermophysical properties of matter: thermal expansion metallic elements and alloys, DTIC document, (1975).

  28. K. Taneichi, T. Narushima, Y. Iguchi and C. Ouchi, Materials Transactions 47, 2540 (2006).

    Article  Google Scholar 

  29. C. S. Tedmon, Journal of The Electrochemical Society 113, 766 (1966).

    Article  Google Scholar 

  30. H. Hindam and D. P. Whittle, Oxidation of Metals 18, 245 (1982).

    Article  Google Scholar 

  31. A. N. Hansson and M. A. J. Somers, Materials at High Temperatures 22, 223 (2005).

    Article  Google Scholar 

  32. P. Kofstad and K. P. Lillerud, Oxidation of Metals 17, 177 (1982).

    Article  Google Scholar 

  33. A. C. S. Sabioni, A. M. Huntz, J. Philibert, B. Lesage and C. Monty, Journal of Materials Science 27, 4782 (1992).

    Article  Google Scholar 

  34. B. Pujilaksono, T. Jonsson, M. Halvarsson, I. Panas, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 70, 163 (2008).

    Article  Google Scholar 

  35. A. Bhowmik, H. T. Pang, I. M. Edmonds, C. M. F. Rae and H. J. Stone, Intermetallics 32, 373 (2013).

    Article  Google Scholar 

  36. M. Hänsel, W.J. Quadakkers, L. Singheiser, and H. Nickel, Forschungszentrum Juelich Gmbh, (1998).

  37. J. Di Martino, PhD Thesis, University of Nancy 1 France, (2002).

  38. M. Michalik, S. L. Tobing, M. Hänsel, V. Shemet, W. J. Quadakkers and D. J. Young, Materials and Corrosion 65, 260 (2014).

    Article  Google Scholar 

  39. P. Kofstad and K. P. Lillerud, Journal of The Electrochemical Society 127, 2410 (1980).

    Article  Google Scholar 

  40. D. Caplan and G. I. Sproule, Oxidation of Metals 9, 459 (1975).

    Article  Google Scholar 

  41. I. Murris, Y. P. Jacob, V. A. C. Haanappel and M. F. Stroosnijder, Oxidation of Metals 55, 307 (2001).

    Article  Google Scholar 

  42. S. Han and D. J. Young, Materials Research 7, 11 (2004).

    Article  Google Scholar 

  43. X. G. Zheng and D. J. Young, Materials Science Forum 251, 567 (1997).

    Article  Google Scholar 

  44. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Scripta Materialia 77, 29 (2014).

    Article  Google Scholar 

  45. M. P. Brady, J. H. Zhu, C. T. Liu, P. F. Tortorelli and L. R. Walker, Intermetallics 8, 1111 (2000).

    Article  Google Scholar 

  46. M. H. Sluiter, Physical Review B 80, 220102 (2009).

    Article  Google Scholar 

  47. S. Prasad and A. Paul, Defect and Diffusion Forum 323, 459 (2012).

    Article  Google Scholar 

  48. S. Roy and A. Paul, Intermetallics 37, 83 (2013).

    Article  Google Scholar 

  49. S. Prasad and A. Paul, Acta Materialia 59, 1577 (2011).

    Article  Google Scholar 

  50. S. Prasad and A. Paul, Intermetallics 19, 1191 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

German Research Foundation (DFG) is gratefully acknowledged for supporting this Project under Contract GA-7704/1-1. The authors would like to thank Dr. Gerald Schmidt for performing EPMA experiments. Dr. Rick Durham is acknowledged for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Soleimani-Dorcheh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani-Dorcheh, A., Galetz, M.C. Oxidation and Nitridation Behavior of Cr–Si Alloys in Air at 1473 K. Oxid Met 84, 73–90 (2015). https://doi.org/10.1007/s11085-015-9544-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9544-5

Keywords

Navigation