Skip to main content
Log in

Paralinear Oxidation of Chromium in O2 + H2O Environment at 600–700 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of chromium in dry O2 and in O2 + 10%H2O at 600 and 700 °C is studied. Scale morphology is investigated by several methods, including scanning electron microscopy (SEM) of cross sections prepared by focussed ion beam milling (FIB). In O2 + H2O at 600 and 700 °C, chromium forms a duplex scale consisting of an inner barrier oxide and a discontinuous outer oxide made up of blade-shaped crystals. Thermogravimetric (TG) measurements show that water vapour influences chromium oxidation by causing vaporization of the protective oxide, resulting in paralinear oxidation kinetics. An extension of the original treatment by Tedmon is deduced, which allows for the determination of the evaporation rate constant k s and the parabolic oxidation rate constant k d from TG data acquired during short exposures. The results show that k d is the same in dry O2 and in O2 + 10%H2O. Equivalently, the transport properties of chromia are the same in the two environments. The equilibrium constant of CrO2(OH)2 formation from chromia is reported. The activation enthalpy of the vaporization reaction is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Asteman, J. E. Svensson, L. G. Johansson, and M. Norell, Oxidation of Metals 52, 95 (1999).

    Article  CAS  Google Scholar 

  2. H. Asteman, J. E. Svensson, M. Norell, and L. G. Johansson, Oxidation of Metals 54, 11 (2000).

    Article  CAS  Google Scholar 

  3. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion (ASM International, USA, 2002).

  4. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, 1988).

  5. N. Otsuka, Y. Nishiyama, and T. Kudo, Oxidation of Metals 62, 121 (2004).

    Article  CAS  Google Scholar 

  6. K. Segerdahl, J. E. Svensson, and L. G. Johansson, Materials and Corrosion-Werkstoffe Und Korrosion 53, 479 (2002).

    Article  CAS  Google Scholar 

  7. H. Asteman, J. E. Svensson, and L. G. Johansson, Oxidation of Metals 57, 193 (2002).

    Article  CAS  Google Scholar 

  8. I. Panas, J. E. Svensson, H. Asteman, T. J. R. Johnson, and L. G. Johansson, Chemical Physics Letters 383, 549 (2004).

    Article  CAS  Google Scholar 

  9. B. B. Ebbinghaus, Combustion and Flame 93, 119 (1993).

    Article  CAS  Google Scholar 

  10. E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, and M. D. Allendorf, Journal of Physical Chemistry A 111, 1971 (2007).

    Article  CAS  Google Scholar 

  11. M. Hansel, W. J. Quadakkers, and D. J. Young, Oxidation of Metals 59, 285 (2003).

    Article  Google Scholar 

  12. B. Tveten, G. Hultquist, and D. Wallinder, Oxidation of Metals 55, 279 (2001).

    Article  CAS  Google Scholar 

  13. C. S. Tedmon, Journal of the Electrochemical Society 113, 766 (1966).

    Article  CAS  Google Scholar 

  14. E. J. Opila and R. E. Hann, Journal of the American Ceramic Society 80, 197 (1997).

    Article  CAS  Google Scholar 

  15. U. Wendt and G. Nolze, Praktische Metallographie-Practical Metallography 44, 236 (2007).

    CAS  Google Scholar 

  16. E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 99, 402 (1952).

    Article  CAS  Google Scholar 

  17. D. J. Young and M. Cohen, Journal of the Electrochemical Society 124, 775 (1977).

    Article  CAS  Google Scholar 

  18. C. Gindorf, L. Singheiser, and K. Hilpert, Journal of Physics and Chemistry of Solids 66, 384 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Swedish Foundation for Strategic Research (SSF) and High Temperature Corrosion Centre (HTC), Chalmers University of Technology, Göteborg, Sweden are acknowledged for financial support. A grant from the Knut and Alice Wallenberg Foundation for acquiring the FEG SEM instrument is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bagas Pujilaksono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujilaksono, B., Jonsson, T., Halvarsson, M. et al. Paralinear Oxidation of Chromium in O2 + H2O Environment at 600–700 °C. Oxid Met 70, 163–188 (2008). https://doi.org/10.1007/s11085-008-9114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-008-9114-1

Keywords

Navigation