Skip to main content
Log in

Relation between the oxidation growth rate of chromia scales and self-diffusion in Cr2O3

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In most cases, chromia scales are assumed to grow by predominant chromium diffusion. However, results of Atkinson and Taylor indicated that chromium bulk diffusion could not account for the growth rate of chromia scales. Moreover, recent results of Parket al. showed that oxygen diffusion in chromia was faster than chromium diffusion. So, at this date, the controlling process of the growth of chromia scales is not elucidated.

To interpret such a phenomenon, oxygen and chromium self-diffusion coefficients in Cr2O3 single crystals and polycrystals were determined in the same materials and in the same experimental conditions, thus allowing a direct comparison. Tracers were introduced by ion implantation, thick film methods, and isotopic exchange, using the54Cr,50Cr and18O isotopes. Depth profiling was made by secondary ion mass spectroscopy (SIMS). The bulk diffusion coefficients were computed by using a general solution of the Fick's law taking into account evaporation and exchange at the surface. Grain-boundary diffusion coefficients were computed by using the Whipple-Le Claire equation for type B intergranular diffusion. Lattice and grain boundary self-diffusien coefficients were determined as a function of temperature and oxygen pressure.

The diffusion coefficients are lower than results given in the literature and do not depend on the oxygen pressure. Moreover, it is found that oxygen diffusion is faster than chromium diffusion. These results are compared to the oxidation constants of chromia-forming alloys and it is shown that neither lattice self-diffusion, nor grain-boundary self-diffusion can justify the growth rate of chromia scales. Such a situation is compared to NiO case, for which authors found important differences in grain-boundary diffusivity, according to the elaboration mode of NiO (thermal oxidation or growth from the melt).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Lillerud andP. Kofstad,J. Electrochem. Soc. 127 (1980) 2397;Oxid. Met. 17 (1982) 127 and 195.

    Google Scholar 

  2. H. Hindam andD. P. Whittle,Oxid. Met. 18 (1983) 245.

    Google Scholar 

  3. A. Atkinson,Rev. Mod. Phys. 57 (1985) 437–470.

    Google Scholar 

  4. P. Kofstad, “High temperature corrosion” (Elsevier Applied Science, London, 1988).

    Google Scholar 

  5. A. C. S. Sabioni, B. Lesage, A. M. Huntz, J. C. Pivin andC. Monty,Phil. Mag. Part I, in press.

  6. M. J. Bennet andD. P. Moon, “The role of active elements in the oxidation behaviour of high temperature metals and alloys”, edited by E. Lang (Elsevier Applied Science, CEC, Petten, 1989).

    Google Scholar 

  7. W. C. Hagel andA. V. Seybolt,J. Electrochem. Soc. 108 (1961) 1146.

    Google Scholar 

  8. L. C. Walters andR. E. Grace,J. Appl. Phys. 36 (1965) 2331.

    Google Scholar 

  9. K. Hoshino andN. L. Peterson,Bull. Amer. Ceram. Soc. (1983) C 202.

  10. A. Atkinson andR. I. Taylor,NATO-ASI,B 129 (1984) 285.

    Google Scholar 

  11. J. H. Park, W. E. King andS. J. Rothman,J. Amer. Ceram. Soc. 70 (1987) 880.

    Google Scholar 

  12. W. E. King andJ. H. Park, in Conference Proceedings Materials Research Society, Spring Meeting, Reno, Nevada (1988).

  13. C. Greskovich,Comm. Amer. Ceram. Soc. 67 (1984) C111-C112.

    Google Scholar 

  14. A. C. S. Sabioni, A. M. Huntz, F. Millot andC. Monty,Phil. Mag. Part II, in press.

  15. A. Atkinson, M. L. O'dwyer andR. I. Taylor,J. Mater. Sci. 18 (1983) 2371.

    Google Scholar 

  16. A. C. S. Sabioni, A. M. Huntz, F. Millot andC. Monty,Phil. Mag. Part III, in press.

  17. A. C. S. Sabioni, Doctor Thesis, University Paris XI, Orsay, France, (1990).

    Google Scholar 

  18. A. C. S. Sabioni, B. Lesage, A. M. Huntz, J. Besson, C. Dolin andC. Monty,Colloq. Phys. C51 (1990) 611–616.

    Google Scholar 

  19. W. C. Hagel,Trans. Amer. Soc. Metals 56 (1963) 583.

    Google Scholar 

  20. C. A. Stearns, F. J. Kohl andG. C. Fryburg,J. Electrochem. Soc. Solid State Sci. Technol. 121 (1974) 945–951.

    Google Scholar 

  21. W. C. Hagel,J. Amer. Ceram. Soc. 48 (1965) 70.

    Google Scholar 

  22. D. Prot, M. Miloche andC. Monty,Colloq. Phys. C51 (1990) 1027–1033.

    Google Scholar 

  23. D. Prot, Doctor Thesis, University Paris VI, France (1991).

    Google Scholar 

  24. M. J. Graham, J. I. Eldrige, D. F. Mitchell andR. J. Hussey,Mater. Sci. Forum 43 (1989) 207–242.

    Google Scholar 

  25. C. Wagner,Z. Phys. Chem. B (1933) 21–25.

  26. A. M. Huntz, G. Moulin andG. Ben Abderrazik,Ann. Chim. Fr. 11 (1986) 291–307.

    Google Scholar 

  27. A. Atkinson,Mater. Sci. Tedmol. 4 (1988) 1046–1051.

    Google Scholar 

  28. F. Barbier andM. Déchamps,J. Phys. Coll. C549 (1988) 575–580.

    Google Scholar 

  29. F. Barbier, C. Monty andM. Déchmps,Phil. Mag. 3 (1988) 475–490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabioni, A.C.S., Huntz, A.M., Philibert, J. et al. Relation between the oxidation growth rate of chromia scales and self-diffusion in Cr2O3 . J Mater Sci 27, 4782–4790 (1992). https://doi.org/10.1007/BF01166020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01166020

Keywords

Navigation