Skip to main content
Log in

On the Oxidation and Nitridation of Chromium at 1300 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Chromium can be a candidate of interest as a base component for refractory alloys for high temperature applications. Few data are available about oxidation kinetic of chromium in air for temperature as high as 1300 °C. Moreover, rare papers take the nitridation of chromium into account in the description of the oxidation process or in the calculation of the kinetic constants. In the present study, global methods like thermogravimetry were linked to thickness measurements and microstructural characterisation to evaluate oxidation and nitridation contribution to weight gain. High stress levels were induced in the oxide layer during its formation. The kinetic constant associated to the nitridation, at this temperature, was one order of magnitude higher than the parabolic oxidation constant. Experiments demonstrated that the presence of nitrogen in the substrate is always a precursor to breakdown of the oxide layer and does not result from diffusion through the Cr2O3 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Carton, C. Rapin, R. Podor, and P. Berthod, Journal of the Electrochemical Society 153, B121 (2006).

    Article  CAS  Google Scholar 

  2. C. T. Liu, J. H. Zhu, M. P. Brady, C. G. McKamey, and L. M. Pike, Intermetallics 8, 1119 (2000).

    Article  CAS  Google Scholar 

  3. L. Royer, S. Mathieu, and P. Steinmetz, Development of Cr–Cr 2 Ta In Situ Composite for High Temperature Application, unpublished study.

  4. J. Di Martino, S. Michon, L. Aranda, P. Berthod, R. Podor, and C. Rapin, Annales de Chimie: Science des Matériaux 28, S231 (2003).

    CAS  Google Scholar 

  5. H. Khedim, R. Podor, C. Rapin, and M. Vilasi, Journal of the American Ceramic Society 91, 3571 (2008).

    Article  CAS  Google Scholar 

  6. E. A. Gulbrandsen and K. F. Andrew, Journal of the Electrochemical Society 104, 334 (1957).

    Article  Google Scholar 

  7. K. P. Lillerud and K. Kofstad, Journal of the Electrochemical Society 27, 2398 (1980).

    Google Scholar 

  8. P. Kofstad, High Temperature Corrosion, Chap. 12 (Elsevier Applied Science, London, 1988), p. 390.

  9. C. Wagner, Zeitschrift für Physikalische Chemie B21, 25 (1931).

  10. I. Murris, Y. P. Jacob, V. A. C. Haanappel, and M. F. Stroosnijder, Oxidation of Metals 55, 307 (2001).

    Article  CAS  Google Scholar 

  11. M. P. Brady, J. H. Zhu, C. T. Liu, P. F. Tortorelli, and L. R. Walker, Intermetallics 8, 1111 (2000).

    Article  CAS  Google Scholar 

  12. M. P. Brady, P. F. Tortorelli, E. A. Payzant, and L. R. Walker, Oxidation of Metals 61, 379 (2004).

    Article  CAS  Google Scholar 

  13. Y. P. Jacob, H. Buscail, E. Caudron, R. Cueff, M. F. Stroosnijder, and V. A. C. Haanappel, Materials Chemistry and Physics 77, 442 (2003).

    Article  CAS  Google Scholar 

  14. H. Buscail, Y. P. Jacob, M. F. Stroosnijder, E. Caudron, R. Cueff, F. Rabaste, and S. Perrier, Materials Science Forum 461464, 93 (2004).

    Google Scholar 

  15. Outokumpu Research Oy, HSC Chemistry 5.11.

  16. K. Taneichi, T. Narushima, Y. Iguchi, and C. Ouchi, Materials Transactions 47, 2540 (2006).

    Article  CAS  Google Scholar 

  17. H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic, National Bureau of Standards Circular (U. S.) 539, 75 (1955).

    Google Scholar 

  18. S. J. Kim, T. Maraquart, and H. F. Franzen, Journal of the Less Common Metals, 158, L9 (1990).

    Google Scholar 

  19. J. G. Buijnsters, P. Shankar, J. Sietsma, and J. J. Ter Meulen, Materials Science and Engineering A 341, 289 (2003).

    Article  Google Scholar 

  20. L. Antoni, A. Galerie, and M. Dupeux, Materials and Corrosion/Werkstoffe und Korrosion 53, 486 (2002).

    Google Scholar 

  21. K. Kofstad and K. P. Lillerud, Oxidation of Metals 17, 177 (1982).

    Article  CAS  Google Scholar 

  22. M. P. Brady and P. Sachenko, Scripta Materialia 52, 809 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Mathieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royer, L., Ledoux, X., Mathieu, S. et al. On the Oxidation and Nitridation of Chromium at 1300 °C. Oxid Met 74, 79–92 (2010). https://doi.org/10.1007/s11085-010-9198-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9198-2

Keywords

Navigation