Skip to main content
Log in

New optical soliton of stochastic chiral nonlinear Schrödinger equation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study aims to search the new soliton solutions of the Stochastic Chiral nonlinear Schrödinger equation. All calculations and graphing are performed using powerful symbolic computational packages in Mathematica software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alharbi, A., Almatrafi, M.B.: Numerical investigation of the dispersive long wave equation using an adaptive moving mesh method and its stability. Res. Phys. 1(16), 102870 (2020)

    Google Scholar 

  • Arshad, M., Seadawy, A.R., Lu, D. Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications. Opt. Quantum Electron. 50, Article number: 421 (2018)

  • Bruzon, M.S., Gandarias, M.L., Muriel, C., Ramirez, J., Saez, S., Romero, F.R.: The stochastic chiral nonlinear Schrödinger equation in 2+1 dimensions. Theor. Math. Phys. 137(1), 1367–1377 (2003)

    Article  MATH  Google Scholar 

  • Cheemaa, N., Chena, S., Seadawy, A.R. Propagation of isolated waves of coupled nonlinear (2 + 1)-dimensional Maccari System in plasma physics. Res. Phys. 17, 102987 (2020)

  • Chen, S.T., Ma, W.X.: Lump solutions of a generalized Stochastic Chiral nonlinear Schrödinger equation. Comput. Math. Appl. 76(7), 1680–16855 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Djilali, S., Ghanbari, B.: The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative. Adv. Differ. Equ. 2021(1), 1–6 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Ege, S.M., Misirli, E.: The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 2014(1), 1–3 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Eslami, M.: Trial solution technique to chiral nonlinear Schrödinger’s equation in (1 + 2)-dimensions. Nonlinear Dyn. 85, 813–816 (2016)

    Article  Google Scholar 

  • Gao, W., Baskonus, H.M., Shi, L.: New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system. Adv. Differ. Equ. 2020(1), 1–1 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, W., Veeresha, P., Baskonus, H.M., Prakasha, D.G., Kumar, P.: A new study of unreported cases of 2019-nCOV epidemic outbreaks. Chaos, Solitons Fractals 1(138), 109929 (2020)

    Article  MathSciNet  Google Scholar 

  • Gao, W., Veeresha, P., Prakasha, D.G., Baskonus, H.M.: New numerical simulation for fractional Benney-Lin equation arising in falling film problems using two novel techniques. Numer. Methods Partial Differ. Equ. 37(1), 210–243 (2021)

    Article  MathSciNet  Google Scholar 

  • Ghanbari, B.: On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional–fractal operators. Adv. Differ. Equ. 2020(1), 1–32 (2020a)

    Article  MathSciNet  Google Scholar 

  • Ghanbari, B.: A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease. Adv. Differ. Equ. 2020(1), 1–20 (2020b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B.: On approximate solutions for a fractional prey–predator model involving the Atangana–Baleanu derivative. Adv. Differ. Equ. 2020(1), 1–24 (2020c)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Kumar, S. A study on fractional predator–prey–pathogen model with Mittag–Leffler kernel-based operators. Numer. Methods Partial Differ. Equ. 23, (2021). https://doi.org/10.1002/num.22689

    Article  Google Scholar 

  • Ghanbari, B.: Chaotic behaviors of the prevalence of an infectious disease in a prey and predator system using fractional derivatives. Math. Methods Appl. Sci. (2021a). https://doi.org/10.1002/mma.7386

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B.: On the nondifferentiable exact solutions to Schamel’s equation with local fractional derivative on Cantor sets. Numer. Methods Partial Differ. Equ. (2021b). https://doi.org/10.1002/num.22740

    Article  Google Scholar 

  • Ghanbari, B.: On novel nondifferentiable exact solutions to local fractional Gardner’s equation using an effective technique. Math. Methods Appl. Sci. Numer. Methods Partial Differ. Equ. (2021c). https://doi.org/10.1002/mma.7060

    Article  MATH  Google Scholar 

  • Ghanbari, B.: Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative. Math. Methods Appl. Sci. (2021d). https://doi.org/10.1002/mma.7302

    Article  MATH  Google Scholar 

  • Ghanbari, B., Atangana, A.: Some new edge detecting techniques based on fractional derivatives with non-local and non-singular kernels. Adv. Differ. Equ. 2020(1), 1–9 (2020)

    Article  MathSciNet  Google Scholar 

  • Ghanbari, B., Baleanu, D.: A novel technique to construct exact solutions for nonlinear partial differential equations. Eur. Phys. J. plus 134(10), 506 (2019)

    Article  Google Scholar 

  • Ghanbari, B., Djilali, S.: Mathematical and numerical analysis of a three species predator–prey model with herd behavior and time fractional-order derivative. Mat. Methods Appl. Sci. 43(4), 1736–1752 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Ghanbari, B., Nisar, K.S., Aldhaifallah, M.: Abundant solitary wave solutions to an extended nonlinear Schrödinger’s equation with conformable derivative using an efficient integration method. Adv. Differ. Equ. 2020(1), 1–25 (2020)

    Article  MATH  Google Scholar 

  • Ghanbari, B., Rada, L., Inc, M.: Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach. J. Appl. Anal. Comput. 9(2), 568–589 (2019b)

    MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Yusuf, A., Baleanu, D.: The new exact solitary wave solutions and stability analysis for the (2 + 1)-dimensional Zakharov–Kuznetsov equation. Adv. Differ. Equ. 2019(1), 1–5 (2019a)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari, B., Kumar, S., Niwas, M., Baleanu, D. The Lie symmetry analysis and exact Jacobi elliptic solutions for the Kawahara–KdV type equations. Res. Phys. 104006 (2021).

  • Goodman, R.H., Holmes, P.J., Weinstein, M.I.: Strong NLS soliton-defect interactions. Physica D 192(3–4), 215–248 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Goyal, M., Baskonus, H.M., Prakash, A.: Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model. Chaos, Solitons Fractals 1(139), 110096 (2020)

    Article  MathSciNet  Google Scholar 

  • He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Hosseini, K., Ayati, Z., Ansari, R.: New exact traveling wave solutions of the Tzitzéica type equations using a novel exponential rational function method. Optik 148, 85–89 (2017)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A.: Traveling wave solutions of the generalized Gerdjikov–Ivanov equation. Optik 1(219), 165193 (2020)

    Article  ADS  Google Scholar 

  • Kudryashov, N.A., Ryabov, P.N.: Analytical and numerical solutions of the generalized dispersive Swift–Hohenberg equation. Appl. Math. Comput. 286, 171–177 (2016)

    MathSciNet  MATH  Google Scholar 

  • Liano, S.J. The proposed homotophy analysis technique for the solution of nonlinear problems (Ph.D. thesis), Shanghai Jiao Tong University (1992)

  • Lu, D., Seadawy, A.R., Arshad, M. Bright–dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt. Quantum Electro. 50, Article number: 23 (2018)

  • Manafian, J., Fazli Aghdaei, M., Khalilian, M., Jeddi, R.S.: Application of the generalized G/G-expansion method for nonlinear PDEs to obtaining soliton wave solution. Optik 135, 395–406 (2017)

    Article  ADS  Google Scholar 

  • McCue, S.W., El-Hachem, M., Simpson, M.J.: Exact sharp-fronted travelling wave solutions of the Fisher–KPP equation. Appl. Math. Lett. 1(114), 106918 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammed, W.W.: Modulation equation for the stochastic Swift–Hohenberg equation with cubic and quintic nonlinearities on the real line. Mathematics 7, 1217 (2019)

    Article  Google Scholar 

  • Munusamy, K., Ravichandran, C., Nisar, K.S., Ghanbari, B.: Existence of solutions for some functional integrodifferential equations with nonlocal conditions. Math. Methods Appl. Sci. 43(17), 10319–10331 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Nabti, A., Ghanbari, B.: Global stability analysis of a fractional SVEIR epidemic model. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7285

    Article  MathSciNet  MATH  Google Scholar 

  • Polyanin, A.D., Sorokin, V.G.: A method for constructing exact solutions of nonlinear delay PDEs. J. Math. Anal. Appl. 494(2), 124619 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Rezazadeh, H., Kumar, D., Neirameh, A., Eslami, M., Mirzazadeh, M.: Applications of three methods for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model with Kerr law nonlinearity. Pramana 94(1), 1–11 (2020)

    Article  ADS  Google Scholar 

  • Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S.M., Neirameh, A.: Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities. Optik 164, 414–423 (2018)

    Article  ADS  Google Scholar 

  • Rezazadeh, H., Neirameh, A., Eslami, M., Bekir, A., Korkmaz, A.: A sub-equation method for solving the cubic–quartic NLSE with the Kerr law nonlinearity. Mod. Phys. Lett. B 33(18), 1950197 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  • Rizvi, S.T.R., Seadawy, A.R., Ali, I., Bibi, I., Younis, M.: Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers. Mod. Phys. Lett. B 34(35), 2050399 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  • Sajid, N., Akram, G.: Novel solutions of Biswas–Arshed equation by newly-model expansion method. Optik 1(211), 164564 (2020)

    Article  ADS  Google Scholar 

  • Shi, Y., Pana, M., Peng, D.: Replicator dynamics and evolutionary game of social tolerance: The role of neutral agents. Econ. Lett. 159, 10–14 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Wang, W.B., Lou, G.W., Shen, X.M., Song, J.Q.: Exact solutions of various physical features for the fifth order potential Bogoyavlenskii–Schiff equation. Res. Phys. 1(18), 103243 (2020)

    Google Scholar 

  • Wazwaz, A.M.: The Variational iteration method for solving linear and nonlinear system of PDEs. Comput. Math. Appl. 54(7–8), 895–902 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eslami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neirameh, A., Eslami, M. New optical soliton of stochastic chiral nonlinear Schrödinger equation. Opt Quant Electron 55, 444 (2023). https://doi.org/10.1007/s11082-023-04564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-04564-8

Keywords

Navigation