Skip to main content
Log in

Trial solution technique to chiral nonlinear Schrodinger’s equation in (1\(+\)2)-dimensions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper applied the trial solution technique to chiral nonlinear Schrodinger’s equation in (1\(+\)2)-dimensions. This led to solitons and other solutions to the model. Besides soliton and singular soliton solutions, this integration scheme also gave way to singular periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas, A., Milovic, D., Milic, D.: Solitons in alpha-helix proteins by he’s variational principle. Int. J. Biomath. 4(4), 423–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biswas, A., Kara, A.H., Savescu, M., Bokhari, A.H., Zaman, F.D.: Solitons and conservation laws in neurosciences. Int. J. Biomath. 6(3), 1350017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kumar, S., Zerrad, E., Yildirim, A., Biswas, A.: Topological Solitons and lie symmetry analysis for the Kadomtsev–Petviashvili–Burgers equation with power law nonlinearity in dusty plasmas. Proc Rom Acad Ser A 14(3), 204–210 (2013)

    MathSciNet  Google Scholar 

  4. Suarez, P., Biswas, A.: Exact 1-soliton solution of the Zakharov equation in plasmas with power law nonlinearity. Appl. Math. Comput. 217(17), 7372–7375 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Biswas, A., Milovic, D., Zerrad, E.: An exact solution for electromagnetic solitons in relativistic plasmas. Phys. Scr. 81(2), 025506 (2010)

    Article  MATH  Google Scholar 

  6. Biswas, A.: Quasi-stationary solitons for langmuir waves in plasmas. Commun. Nonlinear Sci. Numer. Simul. 14(1), 69–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Biswas, A.: Stochastic perturbation of solitons for alfven waves in plasmas. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1547–1553 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biswas, A.: Soliton perturbation theory for alfven waves in plasmas. Phys. Plasmas. 12(2), 022306 (3 pages) (2005)

  9. Biswas, A.: Perturbation of chiral solitons. Nuclear Phys. B 806(3), 457–461 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biswas, A.: Chiral solitons with time-dependent coefficients. Int. J. Theor. Phys. 49(1), 79–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biswas, A., Milovic, D.: Chiral solitons with Bohm potential by He’s variational principle. Phys. Atomic Nuclei 74(5), 781–783 (2011)

    Article  Google Scholar 

  12. Biswas, A., Kara, A.H., Zerrad, E.: Dynamics and conservation lawsof generalized chiral solitons. Open Nuclear ParticlePhys. J. 4, 21–24 (2011)

    Article  Google Scholar 

  13. Johnpillai, A.G., Yildirim, A., Anjan, B.: Chiral solitons with Bohm potential by lie group analysis and traveling wave hypothesis. Rom. J. Phys. 57(3–4), 545–554 (2012)

    MathSciNet  Google Scholar 

  14. Ebadi, G. Yildirim, A. & Biswas, A.: Chiral solitons with bohm potential using g/g method and exp-function method. Rom. Rep. Phys. 64(2), 357–366 (2012)

  15. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrodinger’s equation withtime-dependent coefficients by trial solution approach. Nonlinear Dyn. 81(1), 277–282 (2015)

  16. Liu, C.S.: Trial equation method to nonlinear evolution equations with rank inhomogeneous: mathematical discussions and its applications’. Commun. Theor. Phys. 45, 219–223 (2006)

    Article  Google Scholar 

  17. Biswas, A.: Chiral solitons in 1+2 dimensions. Int. J. Theor. Phys 48, 3403–3409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nishino, A., Umeno, Y., Wadati, M.: Chiral nonlinear Schrodinger equation. Chaos Solitons Fractals 9, 1063–1069 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhrawy, A.H.: An efficient Jacobi pseudo spectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)

    MathSciNet  Google Scholar 

  20. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  21. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1), 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation. Calcolo (2015). doi:10.1007/s10092-014-0132-x

  23. Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Van Gorder, R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrodinger equations. J. Comput. Phys. 261, 244–255 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, M. Trial solution technique to chiral nonlinear Schrodinger’s equation in (1\(+\)2)-dimensions. Nonlinear Dyn 85, 813–816 (2016). https://doi.org/10.1007/s11071-016-2724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2724-2

Keywords

Navigation