Skip to main content
Log in

Suppressing homoclinic chaos for a class of vibro-impact oscillators by non-harmonic periodic excitations

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a theoretical framework and carries out numerical verification for suppressing homoclinic chaos of a class of vibro-impact oscillators by adding non-harmonic periodic excitations. Based on the Melnikov method of non-smooth systems, the theoretical sufficient conditions for suppressing homoclinic chaos are obtained by eliminating the simple zeros of the corresponding Melnikov function while retaining the infinite terms of the Fourier expansion of the non-harmonic periodic excitations. Furthermore, the effects of waveforms, amplitudes, initial phases, and impulse of the non-harmonic periodic excitations on chaos suppression are studied, and the optimal parameters for suppressing chaos are analytically obtained. Finally, the effectiveness of theories is verified by the vibro-impact Duffing oscillator. Numerical results show that chaos induced by the transversal intersection of homoclinic orbits can be weakened or even suppressed by adding the non-harmonic periodic excitations, and when the impulse transmitted by the non-harmonic periodic excitations is maximum, the effective amplitude for suppressing chaos is minimal. Moreover, there may be some phenomena that do not have too good a quantitative agreement between theoretical predictions and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availibility statement

The authors declare that all data generated or analysed during this study are included in this published article.

References

  1. Goldman, P., Muszynska, A.: Dynamic effects in mechanical structures with gaps and impacting: order and chaos. J. Vib. Acoust. 116, 541–547 (1994)

    Article  Google Scholar 

  2. Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)

    Article  Google Scholar 

  3. Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999)

    Book  Google Scholar 

  4. Feeny, B.F., Moon, F.C.: Empirical dry-friction modelling in a forced oscillator using chaos. Nonlinear Dyn. 47, 129–141 (2007)

    Article  Google Scholar 

  5. Kobori, T., Takahashi, M., Nasu, T., Niwa, N., Ogasawara, K.: Seismic response controlled structure with active variable stiffness system. Earthq. Eng. Struct. Dyn. 22, 925–941 (1993)

    Article  Google Scholar 

  6. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16, 235–249 (2005)

    Article  MathSciNet  Google Scholar 

  7. Banerjee, S., Verghese, G.: Nonlinear Phenomena in Power Electronics. IEEE Press, New York (2001)

    Book  Google Scholar 

  8. Du, Z.D., Zhang, W.N.: Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl. 50, 445–458 (2005)

    Article  MathSciNet  Google Scholar 

  9. Xu, W., Feng, J.Q., Rong, H.W.: Melnikov’s method for a general nonlinear vibro-impact oscillator. Nonlinear Anal. Theory Methods Appl. 71, 418–426 (2009)

    Article  MathSciNet  Google Scholar 

  10. Li, S.B., Wu, H.L., Zhou, X.X., Wang, T.T., Zhang, W.: Theoretical and experimental studies of global dynamics for a class of bistable nonlinear impact oscillators with bilateral rigid constraints. Int. J. Non-Linear Mech. 133, 103720 (2021)

    Article  Google Scholar 

  11. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Thompson, J.M.T., Grebogi, C.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Philos. Trans. R. Soc. 366, 635–652 (2008)

    Article  MathSciNet  Google Scholar 

  12. Li, S.B., Zhang, W., Hao, Y.X.: Melnikov-type method for a class of discontinuous planar systems and applications. Int. J. Bifurcat. Chaos 24, 1450022 (2014)

    Article  MathSciNet  Google Scholar 

  13. Li, S.B., Shen, C., Zhang, W., Hao, Y.X.: Homoclinic bifurcations and chaotic dynamics for a piecewise linear system under a periodic excitation and a viscous damping. Nonlinear Dyn. 79, 2395–2406 (2015)

    Article  MathSciNet  Google Scholar 

  14. Castro, J., Alvarez, J.: Melnikov-type chaos of planar systems with two discontinuities. Int. J. Bifurc. Chaos 25, 1550027 (2015)

    Article  MathSciNet  Google Scholar 

  15. Tian, R.L., Zhou, Y.F., Zhang, B.L., Yang, X.W.: Chaotic threshold for a class of impulsive differential system. Nonlinear Dyn. 83, 2229–2240 (2016)

    Article  MathSciNet  Google Scholar 

  16. Meucci, R., Gadomski, W., Ciofini, M., Arecchi, F.T.: Experimental control of chaos by means of weak parametric perturbations. Phys. Rev. E 49, R2528-2531 (1994)

    Article  Google Scholar 

  17. Qu, Z.L., Hu, G., Yang, G.J., Qin, G.R.: Phase effect in taming nonautonomous chaos by weak harmonic perturbations. Phys. Rev. Lett. 74, 1736–1739 (1995)

    Article  Google Scholar 

  18. Chacón, R.: Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations. Phil. Trans. R. Soc. A 364, 2335–2351 (2006)

    Article  MathSciNet  Google Scholar 

  19. Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)

    Google Scholar 

  20. Jackson, E.A.: Perspectives of Nonlinear Dynamics. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  21. Martínez, P.J., Chacón, R.: Impulse-induced optimum signal amplification in scale-free networks. Phys. Rev. E 93, 042311 (2016)

    Article  Google Scholar 

  22. Chacón, R.: Control of Homoclinic Chaos by Weak Periodic Perturbations. World Scientific, Singapore (2005)

    Book  Google Scholar 

  23. Chacón, R.: Optimal control of wave-packet localization in driven two-level systems and curved photonic lattices: a unified view. Phys. Rev. A 85, 013813 (2012)

    Article  Google Scholar 

  24. Chacón, R., Palmero, F., Cuevas-Maraver, J.: Impulse-induced localized control of chaos in starlike networks. Phys. Rev. E 93, 062210 (2016)

    Article  Google Scholar 

  25. Martínez, P.J., Euzzor, S., Gallas, J.A.C., Meucci, R., Chacón, R.: Identification of minimal parameters for optimal suppression of chaos in dissipative driven systems. Sci. Rep. 7, 17988 (2017)

    Article  Google Scholar 

  26. Palmero, F., Chacón, R.: Suppressing chaos in damped driven systems by non-harmonic excitations: experimental robustness against potential’s mismatches. Nonlinear Dyn. 108, 2643–2654 (2022)

    Article  Google Scholar 

  27. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)

    MathSciNet  Google Scholar 

  28. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    Google Scholar 

  29. Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, New York (1988)

    Book  Google Scholar 

  30. Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726 (1990)

    Article  MathSciNet  Google Scholar 

  31. Braiman, Y., Goldhirsch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66, 2545–2548 (1991)

    Article  MathSciNet  Google Scholar 

  32. Chacón, R., Díaz Bejarano, J.: Routes to suppressing chaos by weak periodic perturbations. Phys. Rev. Lett. 71, 3103–3106 (1993)

    Article  Google Scholar 

  33. Rajasekar, S.: Controlling of chaos by weak periodic perturbations in Duffing-van der Pol oscillator. Pramana 41, 295–309 (1993)

    Article  Google Scholar 

  34. Lenci, S., Rega, G.: Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dyn. 33, 71–86 (2003)

    Article  MathSciNet  Google Scholar 

  35. Lenci, S., Rega, G.: Optimal control of homoclinic bifurcation: theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. J. Vib. Control 9, 281–315 (2003)

    Article  MathSciNet  Google Scholar 

  36. Lenci, S., Rega, G.: Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos, Solitons Fractals 15, 173–186 (2003)

    Article  MathSciNet  Google Scholar 

  37. Lenci, S., Rega, G.: Global optimal control and system-dependent solutions in the hardening Helmholtz-Duffing oscillator. Chaos, Solitons Fractals 21, 1031–1046 (2004)

    Article  MathSciNet  Google Scholar 

  38. Lenci, S., Rega, G.: A unified control framework of the non-regular dynamics of mechanical oscillators. J. Sound Vib. 278, 1051–1080 (2004)

    Article  MathSciNet  Google Scholar 

  39. Leung, A.Y.T., Liu, Z.R.: Suppressing chaos for some nonlinear oscillators. Int. J. Bifur. Chaos 14, 1455–1465 (2004)

    Article  MathSciNet  Google Scholar 

  40. Leung, A.Y.T., Liu, Z.R.: Some new methods to suppress chaos for a kind of nonlinear oscillator. Int. J. Bifur. Chaos 14, 2955–2961 (2004)

    Article  MathSciNet  Google Scholar 

  41. Yang, J., Jing, Z.: Controlling chaos in a pendulum equation with ultra-subharmonic resonances. Chaos, Solitons Fractals 42, 1214–1226 (2009)

    Article  Google Scholar 

  42. Jimenez-Triana, A., Tang, W.K.S., Chen, G., Gauthier, A.: Chaos control in Duffing system using impulsive parametric perturbations. IEEE Trans. Circuits Syst. II Express Briefs 57, 305–309 (2010)

    Google Scholar 

  43. Chen, X.W., Jing, Z.J., Fu, X.L.: Chaos control in a pendulum system with excitations and phase shift. Nonlinear Dyn. 78, 317–327 (2014)

    Article  MathSciNet  Google Scholar 

  44. Du, L., Zhao, Y.P., Lei, Y.M., Hu, J., Yue, X.L.: Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection. Nonlinear Dyn. 92, 1921–1933 (2018)

    Article  Google Scholar 

  45. Chacón, R., Miralles, J.J., Martínez, J.A., Balibrea, F.: Taming chaos in damped driven systems by incommensurate excitations. Commun. Nonlinear Sci. Numer. Simulat. 73, 307–318 (2019)

    Article  MathSciNet  Google Scholar 

  46. Lenci, S., Rega, G.: A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dyn. 15, 391–409 (1998)

    Article  MathSciNet  Google Scholar 

  47. Lenci, S., Rega, G.: Controlling nonlinear dynamics in a two-well impact system. I: attractors and bifurcation scenario under symmetric excitations. Int. J. Bifur. Chaos 8, 2387–2407 (1998)

    Article  MathSciNet  Google Scholar 

  48. Lenci, S., Rega, G.: Controlling nonlinear dynamics in a two-well impact system . II: attractors and bifurcation scenario under unsymmetric optimal excitation. Int. J. Bifur. Chaos 8, 2409–2424 (1998)

    Article  MathSciNet  Google Scholar 

  49. Lenci, S., Rega, G.: Numerical control of impact dynamics of inverted pendulum through optimal feedback strategies. J. Sound Vib. 236, 505–527 (2000)

    Article  Google Scholar 

  50. Lenci, S., Rega, G.: Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation. Chaos, Solitons Fractals 11, 2453–2472 (2000)

    Article  MathSciNet  Google Scholar 

  51. Kunze, M.: Non-smooth Dynamical Systems. Springer, Berlin (2000)

    Book  Google Scholar 

  52. Kukučka, P.: Melnikov method for discontinuous planar sytems. Nonlinear Anal. 66, 2698–2719 (2007)

    Article  MathSciNet  Google Scholar 

  53. Shi, L., Zou, Y., Küpper, T.: Melnikov method and detection of chaos for non-smooth systems. Acta Math. Appl. Sin. Engl. Ser. 29, 881–896 (2013)

    Article  MathSciNet  Google Scholar 

  54. Battelli, F., Fečkan, M.: Homoclinic trajectories in discontinuous systems. J. Dyn. Differ. Equ. 20, 337–376 (2008)

    Article  MathSciNet  Google Scholar 

  55. Battelli, F., Fečkan, M.: Bifurcation and chaos near sliding homoclinics. J. Differ. Equ. 248, 2227–2262 (2010)

    Article  MathSciNet  Google Scholar 

  56. Battelli, F., Fečkan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Phys. D 241, 1962–1975 (2012)

    Article  MathSciNet  Google Scholar 

  57. Li, S.B., Ma, W.S., Zhang, W., Hao, Y.X.: Melnikov method for a class of planar hybrid piecewise-smooth systems. Int. J. Bifurc. Chaos 26, 1650030 (2016)

    Article  MathSciNet  Google Scholar 

  58. Li, S.B., Gong, X.J., Zhang, W., Hao, Y.X.: The Melnikov method for detecting chaotic dynamics in a planar hybrid piecewise-smooth system with a switching Manifold. Nonlinear Dyn. 89, 939–953 (2017)

    Article  MathSciNet  Google Scholar 

  59. Li, S.B., Zhang, W.: Melnikov Method and Its Applications of Global Dynamics for Plannar Non-Smooth Systems. Science Press, Beijing (2022)

    Google Scholar 

  60. Li, H.Q., Liao, X.F., Huang, J.J., Chen, G., Dong, Z.Y., Huang, T.W.: Diverting homoclinic chaos in a class of piecewise smooth oscillators to stable periodic orbits using small parametrical perturbations. Neurocomputing 149, 1587–1595 (2015)

  61. Li, S.B., Ma, X.X., Bian, X.L., Lai, S.K., Zhang, W.: Suppressing homoclinic chaos for a weak periodically excited non-smooth oscillator. Nonlinear Dyn. 99, 1621–1642 (2020)

    Article  Google Scholar 

  62. Li, S.B., Chen, J.Z., Kou, L.Y.: Suppressing homoclinic chaos for vibro-impact oscillators. Int. J. Bifurc. Chaos 32, 2250227 (2022)

    Article  MathSciNet  Google Scholar 

  63. Chacón, R., Uleysky, M.Y., Makarov, D.: Universal chaotic layer width in space-periodic Hamiltonian systems under adiabatic ac time-periodic forces. Europhys. Lett. 90, 40003 (2010)

  64. Wei, M.-D., Hsu, C.-C.: Numerical study of nonlinear dynamics in a pump-modulation Nd:YVO\(_{4}\) laser with humped modulation profile. Opt. Commun. 285, 1366 (2012)

    Article  Google Scholar 

  65. Cuevas-Maraver, J., Chacón, R., Palmero, F.: Impulse-induced generation of stationary and moving discrete breathers in nonlinear oscillator networks. Phys. Rev. E 94, 062206 (2016)

    Article  MathSciNet  Google Scholar 

  66. Chacón, R., Martínez, P.J., Binder, P.-M.: Bouncing states of a droplet on a liquid surface under generalized forcing. Phys. Rev. E 98, 042215 (2018)

    Article  Google Scholar 

  67. Chacón, R., Martínez, J.A., Miralles, J.J.: Impulse-induced optimum control of escape from a metastable state by periodic secondary excitations. Phys. Rev. E 85, 066207 (2012)

    Article  Google Scholar 

  68. Armitage, J.V., Eberlein, W.F.: Elliptic Functions. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  69. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer-Verlag, Berlin (1971)

    Book  Google Scholar 

  70. Chacón, R.: Relative effectiveness of weak periodic excitations in suppressing homoclinic/heteroclinic chaos. Eur. Phys. J. B 30, 207–210 (2002)

    Article  Google Scholar 

  71. Jin, L., Lu, Q.S., Twizell, E.H.: A method for calculating the spectrum of Lyapunov exponents by local maps in nonsmooth impact-vibrating systems. J. Sound Vib. 298, 1019–1033 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant Nos. 12172376, the Fundamental Research Funds for the Central Universities of Civil Aviation University of China through Grant No. 3122019144, the Postgraduate Scientific Research and Innovation Project of Civil Aviation University of China through Grant No. 2023YJSKC06008.

Funding

This study was founded by the National Natural Science Foundation of China through Grant Nos. 12172376, the Fundamental Research Funds for the Central Universities of Civil Aviation University of China through Grant No. 3122019144, the Postgraduate Scientific Research and Innovation Project of Civil Aviation University of China through Grant No. 2023YJSKC06008.

Author information

Authors and Affiliations

Authors

Contributions

SL: Conceptualization, methodology, reviewing, validation, supervision. RX: writing- original draft preparation, visualization, software, reviewing and editing. LK: validation, reviewing, supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shuangbao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The Hamiltonian equation of system (12) is

$$\begin{aligned} H\left( x,y\right) =\frac{1}{2}y^{2}+V\left( x\right) . \end{aligned}$$
(A.1)

Let \(H\left( x,y\right) \)=\(H\left( 0,0\right) =0\), and get

$$\begin{aligned} y^{2}=-2V\left( x\right) , \end{aligned}$$

which is equivalent to

$$\begin{aligned} y=\pm \sqrt{-2V\left( x\right) }. \end{aligned}$$
(A.2)

The calculation process of the Melnikov function Eq. (14) is as follows:

$$\begin{aligned}{} & {} M\left( \tau _{0}\right) \nonumber \\{} & {} \quad =-2\,\rho \left[ V\left( 0\right) -V\left( \alpha \right) \right] \nonumber \\{} & {} \qquad +\int _{-\infty }^{-T}\left[ JDH\left( \gamma ^{u}\left( s\right) \right) \wedge g_{1}\left( \gamma ^{u}\left( s\right) ,s+\tau _{0}+T\right) \right] ds\nonumber \\{} & {} \qquad +\int _{T}^{+\infty }\left[ JDH\left( \gamma ^{s}\left( s\right) \right) \wedge g_{1}\left( \gamma ^{s}\left( s\right) ,s+\tau _{0}-T\right) \right] ds\nonumber \\{} & {} \qquad +\int _{-\infty }^{-T}\left[ JDH\left( \gamma ^{u}\left( s\right) \right) \wedge g_{2}\left( \gamma ^{u}\left( s\right) ,s+\tau _{0}+T\right) \right] ds\nonumber \\{} & {} \qquad +\int _{T}^{+\infty }\left[ JDH\left( \gamma ^{s}\left( s\right) \right) \wedge g_{2}\left( \gamma ^{s}\left( s\right) ,s+\tau _{0}-T\right) \right] ds,\nonumber \\{} & {} \quad =-2\,\rho \left[ V\left( 0\right) -V\left( \alpha \right) \right] \nonumber \\{} & {} \qquad +\int _{-\infty }^{-T}-\delta y^{2}\left( \tau \right) +F y\left( \tau \right) \cos \left( \Omega \left( \tau +\tau _{0}+T\right) \right) d\tau \nonumber \\{} & {} \qquad +\int _{T}^{+\infty }-\delta y^{2}\left( \tau \right) +F y\left( \tau \right) \cos \left( \Omega \left( \tau +\tau _{0}-T\right) \right) d\tau \nonumber \\{} & {} \qquad -\int _{-\infty }^{-T}y\left( \tau \right) \eta f\left( \tau +\tau _{0}+T\right) d\tau \nonumber \\{} & {} \qquad -\int _{T}^{+\infty }y\left( \tau \right) \eta f\left( \tau +\tau _{0}-T\right) d\tau ,\nonumber \\{} & {} \quad =-2\,\rho \left[ V\left( 0\right) -V\left( \alpha \right) \right] -\delta \left[ \int _{-\infty }^{-T}y^{2}\left( \tau \right) d\tau \right. \nonumber \\{} & {} \qquad \left. +\int _{T}^{+\infty }y^{2}\left( \tau \right) d\tau \right] \nonumber \\{} & {} \qquad +F\left[ \int _{-\infty }^{-T}y\left( \tau \right) \cos \left( \Omega \left( \tau +\tau _{0}+T\right) \right) d\tau \right. \nonumber \\{} & {} \qquad \left. +\int _{T}^{+\infty }y\left( \tau \right) \cos \left( \Omega \left( \tau +\tau _{0}-T\right) \right) d\tau \right] \nonumber \\{} & {} \qquad -\int _{-\infty }^{-T}y\left( \tau \right) \eta \sum _{n=0}^{\infty }a_{n}\left( m\right) \sin \left( \Omega _{n}\left( \tau +\tau _{0}+T\right) \right. \nonumber \\{} & {} \qquad \left. +\left( 2n+1\right) \varphi \right) d\tau \nonumber \\{} & {} \qquad -\int _{T}^{+\infty }y\left( \tau \right) \eta \sum _{n=0}^{\infty }a_{n}\left( m\right) \sin \left( \Omega _{n}\left( \tau +\tau _{0}-T\right) \right. \nonumber \\{} & {} \qquad \left. +\left( 2n+1\right) \varphi \right) d\tau , \end{aligned}$$
(A.3)

where \(\Omega _{n}=\left( 2n+1\right) \Omega \).

Mark that

$$\begin{aligned} \begin{aligned}&I_{1}=\int _{-\infty }^{-T}y^{2}\left( \tau \right) d\tau +\int _{T}^{+\infty }y^{2}\left( \tau \right) d\tau ,\\&I_{2}\left( \Omega \right) =\underbrace{\int _{-\infty }^{-T}y\left( \tau \right) \cos \left( \Omega \left( \tau +\tau _{0}+T\right) \right) d\tau }_{\textit{I}_{21}\left( \Omega \right) }\\&\quad +\underbrace{\int _{T}^{+\infty }y\left( \tau \right) \cos \left( \Omega \left( \tau +\tau _{0}-T\right) \right) d\tau }_{\textit{I}_{22}\left( \Omega \right) },\\&I_{4}\left( \Omega _{n}\right) =\underbrace{\int _{-\infty }^{-T}y\left( \tau \right) \sin \left( \Omega _{n} \left( \tau +\tau _{0}+T\right) +\left( 2n+1\right) \varphi \right) d\tau }_{\textit{I}_{41}\left( \Omega _{n}\right) }\\&\quad +\underbrace{\int _{T}^{+\infty }y\left( \tau \right) \sin \left( \Omega _{n}\left( \tau +\tau _{0}-T\right) + \left( 2n+1\right) \varphi \right) d\tau }_{\textit{I}_{42}\left( \Omega _{n}\right) }.\\ \end{aligned} \end{aligned}$$

It is easy to obtain

$$\begin{aligned} \begin{aligned} I_{1}&=\int _{-\infty }^{-T}y\left( \tau \right) \dot{x}\left( \tau \right) d\tau +\int _{T} ^{+\infty }y\left( \tau \right) \dot{x}\left( \tau \right) d\tau \\&=\int _{0}^{\alpha }ydx+\int _{\alpha }^{0}ydx\\&=2\int _{0}^{\alpha }\sqrt{-2V\left( x\right) }dx. \end{aligned} \end{aligned}$$
(A.4)

Since

$$\begin{aligned} \begin{aligned} \cos \left( \Omega \left( \tau +\tau _{0}+T\right) \right) =&\cos \left( \Omega \tau _{0}\right) \cos \left( \Omega \left( \tau +T\right) \right) \\&-\sin \left( \Omega \tau _{0}\right) \sin \left( \Omega \left( \tau +T\right) \right) ,\\ \cos \left( \Omega \left( \tau +\tau _{0}-T\right) \right) =&\cos \left( \Omega \tau _{0}\right) \cos \left( \Omega \left( \tau -T\right) \right) \\&-\sin \left( \Omega \tau _{0}\right) \sin \left( \Omega \left( \tau -T\right) \right) , \end{aligned} \end{aligned}$$

\(I_{21}\left( \Omega \right) \) can be reformed as

$$\begin{aligned} I_{21}\left( \Omega \right)= & {} \int _{-\infty }^{-T}y\left( \tau \right) \left[ \cos \left( \Omega \tau _{0}\right) \cos \left( \Omega \left( \tau +T\right) \right) \right. \nonumber \\{} & {} \left. -\sin \left( \Omega \tau _{0}\right) \sin \left( \Omega \left( \tau +T\right) \right) \right] d\tau \nonumber \\= & {} \cos \left( \Omega \tau _{0}\right) \int _{-\infty }^{-T}y\left( \tau \right) \cos \left( \Omega (\tau +T)\right) d\tau \nonumber \\{} & {} -\sin \left( \Omega \tau _{0}\right) \int _{-\infty }^{-T}y\left( \tau \right) \sin \left( \Omega (\tau +T)\right) d\tau \nonumber \\= & {} \cos \left( \Omega \tau _{0}\right) \int _{-\infty }^{-T}\cos \left( \Omega \left( \tau +T\right) \right) dx \left( \tau \right) \nonumber \\{} & {} -\sin \left( \Omega \tau _{0}\right) \int _{-\infty }^{-T}\sin \left( \Omega \left( \tau +T\right) \right) dx\left( \tau \right) \nonumber \\= & {} \cos \left( \Omega \tau _{0}\right) \int _{0}^{\alpha }\cos \left( \Omega \left( \tau +T\right) \right) dx\nonumber \\{} & {} -\sin \left( \Omega \tau _{0}\right) \int _{0}^{\alpha }\sin \left( \Omega \left( \tau +T\right) \right) dx. \end{aligned}$$
(A.5)

Note that

$$\begin{aligned} y=\frac{dx}{d\tau }=\sqrt{-2V\left( x\right) },\quad y>0, \end{aligned}$$

i.e.

$$\begin{aligned} d\tau =\frac{1}{\sqrt{-2V\left( x\right) }}dx, \end{aligned}$$

which means

$$\begin{aligned} \int _{-T}^{\tau }d\tau= & {} \tau +T=\int _{\alpha }^{x}\frac{1}{\sqrt{-2V\left( x\right) }}dx,\nonumber \\ \tau= & {} -T+\int _{\alpha }^{x}\frac{1}{\sqrt{-2V\left( x\right) }}dx. \end{aligned}$$
(A.6)

Substituting Eq. (A.6) into Eq. (A.5), yields

$$\begin{aligned} \begin{aligned} I_{21}\left( \Omega \right) =&\cos \left( \Omega \tau _{0}\right) \int _{0}^{\alpha }\cos \bigg (\Omega \int _{\alpha }^{x}\frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx\\&-\sin \left( \Omega \tau _{0}\right) \int _{0}^{\alpha }\sin \bigg (\Omega \int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx. \end{aligned} \end{aligned}$$
(A.7)

Similarly, get

$$\begin{aligned} \begin{aligned} I_{22}\left( \Omega \right) =&-\cos \left( \Omega \tau _{0}\right) \int _{0}^{\alpha }\cos \bigg (\Omega \int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx\\&-\sin \left( \Omega \tau _{0}\right) \int _{0}^{\alpha } \sin \bigg (\Omega \int _{\alpha }^{x}\frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx. \end{aligned} \end{aligned}$$
(A.8)

Then the expression of \(I_{2}\left( \Omega \right) \) can be obtained as follows:

$$\begin{aligned} I_{2}\left( \Omega \right) =-2\sin \left( \Omega \tau _{0}\right) \int _{0}^{\alpha }\sin \bigg (\Omega \int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx. \nonumber \\ \end{aligned}$$
(A.9)

Let

$$\begin{aligned} I_{3}\left( \Omega \right) =-2\int _{0}^{\alpha }\sin \bigg (\Omega \int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx, \nonumber \\ \end{aligned}$$
(A.10)

so \(I_{2}\left( \Omega \right) =I_{3}\left( \Omega \right) \sin \left( \Omega \tau _{0}\right) \).

Since

$$\begin{aligned} \begin{aligned} \sin&\left( \Omega _{n}\left( \tau +\tau _{0}+T\right) +\left( 2n+1\right) \varphi \right) \\&\quad =\sin \left( \Omega _{n}\left( \tau +T\right) \right) \cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad +\cos \left( \Omega _{n}\left( \tau +T\right) \right) \sin \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) ,\\&\sin \left( \Omega _{n}\left( \tau +\tau _{0}-T\right) +\left( 2n+1\right) \varphi \right) \\&\quad =\sin \left( \Omega _{n}\left( \tau -T\right) \right) \cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad +\cos \left( \Omega _{n}\left( \tau -T\right) \right) \sin \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) ,\\ \end{aligned} \end{aligned}$$

\(I_{41}\left( \Omega _{n}\right) \) can be reformed as

$$\begin{aligned} \begin{aligned}&I_{41}\left( \Omega _{n}\right) \\&\quad =\int _{-\infty }^{-T} y\left( \tau \right) \left[ \sin \left( \Omega _{n}\left( \tau +T\right) \right) \cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \right. \\&\quad \left. +\cos \left( \Omega _{n}\left( \tau +T\right) \right) \sin \left( \Omega _{n}\tau _{0} +\left( 2n+1\right) \varphi \right) \right] d\tau \\&\quad =\cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{-\infty }^{-T}y\left( \tau \right) \sin \left( \Omega _{n}\left( \tau +T\right) \right) d\tau + \sin \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{-\infty }^{-T}y\left( \tau \right) \cos \left( \Omega _{n}\left( \tau +T\right) \right) d\tau =\cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{-\infty }^{-T}\sin \left( \Omega _{n}\left( \tau +T\right) \right) dx \left( \tau \right) +\sin \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{-\infty }^{-T}\cos \left( \Omega _{n}\left( \tau +T\right) \right) dx \left( \tau \right) =\cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{0}^{\alpha }\sin \left( \Omega _{n}\left( \tau +T\right) \right) dx +\sin \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{0}^{\alpha }\cos \left( \Omega _{n}\left( \tau +T\right) \right) dx=\cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{0}^{\alpha }\sin \bigg (\Omega _{n}\int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx +\sin \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\quad \int _{0}^{\alpha }\cos \bigg (\Omega _{n}\int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx. \end{aligned} \end{aligned}$$
(A.11)

Similarly, get

$$\begin{aligned} \begin{aligned} I_{42}\left( \Omega _{n}\right) =&\cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\int _{0}^{\alpha }\sin \bigg (\Omega _{n}\int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx\\&-\sin \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\int _{0}^{\alpha }\cos \bigg (\Omega _{n}\int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx. \end{aligned} \end{aligned}$$
(A.12)

Then the expression of \(I_{4}\left( \Omega _{n}\right) \) can be obtained as follows:

$$\begin{aligned} \begin{aligned} I_{4}\left( \Omega _{n}\right)&=2\cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \\&\int _{0}^{\alpha }\sin \bigg (\Omega _{n}\int _{\alpha }^{x}\frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg ) dx. \end{aligned} \end{aligned}$$
(A.13)

Let

$$\begin{aligned} I_{5}\left( \Omega _{n}\right) =2\int _{0}^{\alpha }\sin \bigg (\Omega _{n}\int _{\alpha }^{x} \frac{1}{\sqrt{-2V\left( s\right) }}ds\bigg )dx, \nonumber \\ \end{aligned}$$
(A.14)

so \(I_{4}\left( \Omega _{n}\right) =I_{5}\left( \Omega _{n}\right) \cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) \).

Thus we obtain the Melnikov function Eq. (14) is as follows:

$$\begin{aligned}{} & {} M\left( \tau _{0}\right) \nonumber \\{} & {} \quad =-2\,\rho \left[ V(0)-V(\alpha )\right] -\delta I_{1} +FI_{3}\left( \Omega \right) \sin \left( \Omega \tau _{0}\right) \nonumber \\{} & {} \qquad -\eta \sum _{n=0}^{\infty }a_{n}\left( m\right) I_{5}\left( \Omega _{n}\right) \cos \left( \Omega _{n}\tau _{0}+\left( 2n+1\right) \varphi \right) .\nonumber \\ \end{aligned}$$
(A.15)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xu, R. & Kou, L. Suppressing homoclinic chaos for a class of vibro-impact oscillators by non-harmonic periodic excitations. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09649-x

Keywords

Navigation