Skip to main content
Log in

Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A generalized Duffing oscillator with fractional-order deflection can be used to model the oscillatory motion of a buckled beam with simply supported or hinged ends. In this work, the problem of suppression of chaos in such a Duffing oscillator is considered. We show the appropriate range of parameters for the control of horseshoe chaos by introducing external periodic resonant excitation and parametric excitation as chaos-suppressing perturbation. Through the Melnikov technique, we obtain that in addition to the frequency, the phase difference between the chaos-inducing excitation and the chaos-suppressing excitation of systems plays a key role in chaos suppression. Given the optimum phase that satisfies the inhibition theorems, we compare the chaos-suppressing efficiency of external and parametric periodic perturbations for the principal resonance case. Compared with parametric (external) excitation, external (parametric) excitation with a frequency above (below) a critical value is more effective in suppressing homoclinic chaos because it provides a wider amplitude range. The results hold for an arbitrary deflection order as either an integer or a fraction, which depends on the material and bending properties of the beam, as long as its value is larger than 1. Moreover, the critical value of the frequency will shift to a larger value as the deflection order increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, H.Q., Liao, X.F.: Analytical proof on the existence of chaos in a generalized Duffing-type oscillator with fractional-order deflection. Nonlinear Anal. 13, 2724–2733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Prathap, G., Varadan, T.K.: The inelastic large deformation of beams. J. Appl. Mech. 43, 689–690 (1976)

    Article  Google Scholar 

  3. Lo, C.C., Gupta, S.D.: Bending of a nonlinear rectangular beam in large deflection. J. Appl. Mech. 45, 213–215 (1978)

    Article  Google Scholar 

  4. Lewis, G., Monasa, F.: Large deflection of Cantilever beams of non-linear material of the Ludwick type subjected to an end moment. Int. J. Non-Linear Mech. 17, 1–6 (1982)

    Article  MATH  Google Scholar 

  5. Cveticanin, L., Zukovic, M.: Melnikov’s criteria and chaos in systems with fractional order deflection. J. Sound Vib. 326, 768–779 (2009)

    Article  Google Scholar 

  6. Haslach, H.W.: Post-buckling behavior of columns with non-linear constitutive equations. Int. J. Non-Linear Mech. 20, 53–67 (1982)

    Article  MATH  Google Scholar 

  7. Haslach, H.W.: Influence of adsorbed moisture on the elastic post-buckling behavior of columns made of non-linear hydrophilic polymers. Int. J. Non-Linear Mech. 27, 527–546 (1992)

    Article  MATH  Google Scholar 

  8. Chen, W.H., Gibson, R.F.: Property distribution for nonuniform composite beams from vibration response measurements and Galerkin’s method. J. Appl. Mech. 65, 127–133 (1988)

    Article  Google Scholar 

  9. Russell, D., Rossing, T.: Testing the nonlinearity of piano hammers using residual shock spectra. Acta Acust. United Acust. 84, 967–975 (1988)

    Google Scholar 

  10. Patten, W.N., Sha, S., Mo, C.: A vibration model of open celled polyurethane foam automotive seat cushions. J. Sound Vib. 217, 145–161 (1998)

    Article  Google Scholar 

  11. Jutte, C.V.: Generalized synthesis methodology of nonlinear springs for prescribed load-displacement function. Ph.D. Dissertation, Mechanical Engineering, The University of Michigan (2008)

  12. Rhoads, J.F.: Generalized parametric resonance in electrostatically actuated micromechanical oscillators. J. Sound Vib. 296, 797–829 (2006)

    Article  Google Scholar 

  13. Rhoads, J.F.: Tunable micromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127, 423–430 (2005)

    Article  Google Scholar 

  14. Cortopassi C., Englander O.: Nonlinear springs for increasing the maximum stable deflection of MSMS electrostatic gap closing actuators. UC Berkeley (2009)

  15. Cveticanin, L.: Oscillator with fraction order restoring force. J. Sound Vib. 320, 1064–1077 (2008)

    Article  Google Scholar 

  16. Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods. Springer, New York (1988)

    Book  MATH  Google Scholar 

  17. Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726–733 (1990)

    Article  MathSciNet  Google Scholar 

  18. Siewe, M., Yamgoué, S.B., Moukam Kakmeni, F.M., Tchawoua, C.: Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn. 62, 379–389 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, S., Shen, C., Zhang, W., Hao, Y.: The Melnikov method of heteroclinic orbits for a class of planar hybrid piecewise-smooth systems and application. Nonlinear Dyn. 85, 1091–1104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fronzoni, L., Giocondo, M., Pettini, M.: Experimented evidence of suppression of chaos by resonant parametric perturbations. Phys. Rev. A 43, 6483–6487 (1991)

    Article  Google Scholar 

  21. Cicogna, G., Fronzoni, L.: Effects of parametric perturbations on the onset of chaos in the Josephson-junction model: theory and analog experiments. Phys. Rev. A 42, 1901–1906 (1990)

    Article  Google Scholar 

  22. Cicogna, G., Fronzoni, L.: Modifying the onset of homoclinic chaos: application to a bistable potential. Phys. Rev. E 47, 4585–4588 (1993)

    Article  Google Scholar 

  23. Cuadros, F., Chacón, R.: Comment on “suppression of chaos by resonant parametric perturbations”. Phys. Rev. E 47, 4628–4629 (1993)

    Article  Google Scholar 

  24. Qu, Z.L., Hu, G., Yang, G.J., Qin, G.R.: Phase effect in taming nonautonomous chaos by weak harmonic perturbations. Phys. Rev. Lett. 74, 1736–1739 (1995)

    Article  Google Scholar 

  25. Yang, J.Z., Qu, Z.L., Hu, G.: Duffing equation with two periodic forcings: the phase effect. Phys. Rev. E 53, 4402–4413 (1996)

    Article  MathSciNet  Google Scholar 

  26. Leung Andrew, Y.T., Liu, Z.R.: Suppressing chaos for some nonlinear oscillators. Int. J. Bifurc. Chaos 14, 1455–1465 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chacón, R.: Suppression of chaos by selective resonant parametric perturbations. Phys. Rev. E 51, 761–764 (1995)

    Article  MathSciNet  Google Scholar 

  28. Chacón, R.: Comparison between parametric excitation and external additional forcing terms as chaos-suppressing perturbations. Phys. Lett. A 249, 431–436 (1998)

    Article  Google Scholar 

  29. Chacón, R.: Maintenance and suppression for biharmonically driven dissipative systems. Phys. Rev. Lett. 86, 293–300 (2001)

    Article  Google Scholar 

  30. Chacón, R.: Relative effectiveness of weak periodic excitations in suppressing homoclinic/heteroclinic chaos. Europhys. Phys. J. B 30, 207–210 (2002)

    Article  Google Scholar 

  31. Chacón, R.: Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitation. Philos. Trans. R. Soc. A 364, 2335–2351 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cveticanin, L., Kovacic, I., Rakaric, Z.: Asymptotic methods for vibrations of the pure non-integer order oscillator. Comput. Math. Appl. 60, 2616–2628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kitio Kwuimy, C.A., Nana Nbendjo, B.R.: Active control of horseshoes chaos in a driven Rayleigh oscillator with fractional order deflection. Phys. Lett. A 375, 3442–3449 (2011)

    Article  MATH  Google Scholar 

  34. Lenci, S., Rega, G.: Forced harmonic vibration in a system with negative linear stiffness and linear viscous damping. In: Kovacic, I., Brennan, M. (eds.) The Duffing Equation. Non-linear Oscillators and Their Behaviour, pp. 219–276. Wiley, Hoboken (2011)

    Chapter  Google Scholar 

  35. Syta, A., Litak, G., Lenci, S.: Chaotic vibrations of the Duffing system with fractional damping. Chaos 24(1), 013107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Belardinelli, P., Lenci, S., Rega, G.: Seamless variation of isometric and anisometric dynamical integrity measures in basins’s erosion. Commun. Nonlinear Sci. Numer. Simul. 56, 499–507 (2018)

    Article  MathSciNet  Google Scholar 

  37. Lenci, S., Orlando, D., Rega, G.: Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos 22(4), 047502 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rega, G., Lenci, S.: Global dynamics perspective for system safety from macro- to nanomechanics: analysis, control, and design engineering. Appl. Mech. Rev. 67(5), 050802 (2015)

    Article  Google Scholar 

  39. Yue, X., Xu, W., Wang, L., Zhou, B.: Transient and steady-state responses in a self-sustained oscillator with harmonic and bounded noise excitations. Probab. Eng. Mech. 30, 70–76 (2012)

    Article  Google Scholar 

  40. Yue, X., Xu, W., Jia, W., Wang, L.: Stochastic response of a \(\phi \)6 oscillator subjected to combined harmonic and Poisson white noise excitations. Phys. A 392, 2988–2998 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 11672233, 11672231 and 11672230), the NSF of Shaanxi Province (No. 2016JM1010) and the NPU Foundation for Fundamental Research (No. 3102017AX008). We appreciate constructive comments and suggestions of the reviewers for great help on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Zhao, Y., Lei, Y. et al. Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection. Nonlinear Dyn 92, 1921–1933 (2018). https://doi.org/10.1007/s11071-018-4171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4171-8

Keywords

Navigation