Skip to main content
Log in

Melnikov method and detection of chaos for non-smooth systems

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

We extend the Melnikov method to non-smooth dynamical systems to study the global behavior near a non-smooth homoclinic orbit under small time-periodic perturbations. The definition and an explicit expression for the extended Melnikov function are given and applied to determine the appearance of transversal homoclinic orbits and chaos. In addition to the standard integral part, the extended Melnikov function contains an extra term which reflects the change of the vector field at the discontinuity. An example is discussed to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, A.A., Vitt, A.A., Khaikin, S.E. Theory of Oscillators. Dover Publications, Inc., New York, 1966

    MATH  Google Scholar 

  2. Awrejcewicz, J., Holicke, M.M. Melnikov’s method and stick-slip chaotic oscillations in very weakly forced mechanical systems. Internat. J. Bifur. Chaos, 9(3): 505–518 (1999)

    Article  MATH  Google Scholar 

  3. Chow, S.N., Hale, J.K. Methods of Bifurcation Theory. Springer-Verlag, New York, Berlin, 1982

    Book  MATH  Google Scholar 

  4. Deimling, K. Multivalued Differential Equations. Walter de Gruyter & Co., Berlin, New York, 1992

    Book  MATH  Google Scholar 

  5. Fečkan, M. Chaotic solutions in differential inclusions: chaos in dry friction problems. Trans. Amer. Math. Soc., 351(7): 2861–2873 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fečkan, M. Chaos in Nonautonomous Differential Inclusions. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15(6): 1919–1930 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Filippov, A.F. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers Group, Dordrecht, 1988

    Book  Google Scholar 

  8. Guckenheimer J., Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983

    Google Scholar 

  9. Housner, G.W. Limit Design of Structures to Resent Earthquakes. Proc. of the World Conference on Earthquakes Engineering, 1956

    Google Scholar 

  10. Housner, G.W. The behaviour of inverted pendulum structures during earthquakes. Bull. Seis. Soc. Am., 53(2): 403–417 (1963)

    Google Scholar 

  11. Holmes, P., Marsden, J. A partial differential equation with infinitely many periodic orbits: Chaotic Oscillations of a Forced Beam. Arch. Rational Mech. Anal., 76(2): 135–165 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holmes, P., Marsden, J. Horseshoes in perturbations of hamiltonian systems with two degrees of freedom. Comm. Math. Phys., 82(4): 523–544 (1981/82)

    Article  MathSciNet  Google Scholar 

  13. Holmes, P., Marsden, J. Horseshoes and arnold diffusion for hamiltonian systems on lie groups. Indiana Univ. Math. J., 32(2): 273–309 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ibrahim, R.A. Friction-induced vibration, chatter, squeal and chaos, Part I. Mechanics of Contact and Friction, ASME Applied Mechanics Reviews, 47(7): 209–226 (1994)

    Article  MATH  Google Scholar 

  15. Ibrahim, R.A. Friction-induced vibration, chatter, squeal and chaos, Part II. Dynamics and Modeling, Asme Applied Mechanics Reviews, 47(7): 227–253 (1994)

    Article  Google Scholar 

  16. Jones, C.K.R.T., Küpper, T., Schaffner, K. Bifurcation of asymmetric solutions in nonlinear optical media. Z. Angew. Math. Phys., 52(5): 859–880 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Küpper, T., Moritz, S. Generalized Hopf bifurcation for non-smooth planar systems. R. Soc. Lond. Philos. Trans. Ser. a Math. Phys. Eng. Sci., 359(1789): 2483–2496 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kunze, M. On Lyapunov exponents for non-smooth dynamical systems with an application to a pendulum with dry friction. J. Dynam. Differential Equations, 12: 31–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kunze, M. Non-smooth dynamical systems. Lecture Notes in Mathematics, 1744, Springer-Verlag, Berlin, 2000

    Book  MATH  Google Scholar 

  20. Kunze, M., Küpper, T. Qualitative analysis of a non-smooth friction-oscillator model. Z. Angew. Math. Phys., 48(1): 87–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kunze, M., Küpper, T., Li, Y. On Conley index theory for non-smooth dynamical systems. Differential Integral Equations, 13(4–6): 479–502 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Leine, R.T., van de Vrande B.L., van Campen, D.H. Bifurcations in nonlinear discontinuous systems. Internal report in Eindhoven University of Technology, report number: 99.010

  23. McKenna, P.J. Large torsional oscillations in suspension bridges revisited: fixing an old approximation. The American Mathematical Monthly, 106: 1–18 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Melnikov, V.K. On the stability of a center for time-periodic perturbations. Trans. Moscow Math. Soc., 12: 1–57 (1963)

    Google Scholar 

  25. Michaeli, B. Lyapunov-Exponenten bei nichtglatten dynamischen Systemen, Ph.D. Thesis, Universität Köln, 1998

    Google Scholar 

  26. Nusse, H.E., Yorke, J.A. Border-collision bifurcations including “period two to period three” for piecewise smooth systems. Physica D, 57: 39–57 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Popp, K., Stelter, P. Nonlinear oscillations of structures induced by dry friction. In: Nonlinear Dynamics in Engineering Systems-IUTAM Symposium Stuttgart, 233–240, 1989. ed., W. Schiehlen, Springer-Verlag, Berlin, Heidelberg, New York, 1990

    Google Scholar 

  28. Schecter, S. The saddle-node separatrix-loop bifurcation. SIAM J. Math. Anal., 18(4): 1142–1156 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Van der Heijden, G.H.M. Nonlinear Drillstring Dynamics, a quest for the origin of chaotic vibrations. Ph.D. Thesis, University of Utrecht, 1994

    Google Scholar 

  30. Wiggins, S. Global Bifurcation and Chaos (Analytical Methods). Applied Mathematical Sciences, 73, Springer-Verlag, New York, Berlin, 1988

    Google Scholar 

  31. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics, 2, Springer-Verlag, New York, 1990

    Google Scholar 

  32. Zou, Y., Küpper, T. Generalized Hopf bifurcation emanated from a corner for piecewise smooth planar system. Nonlinear Analysis, 62: 1–17 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-song Shi.

Additional information

Supported by the National Natural Science Foundation of China (No.10071030).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Ls., Zou, Yk. & Küpper, T. Melnikov method and detection of chaos for non-smooth systems. Acta Math. Appl. Sin. Engl. Ser. 29, 881–896 (2013). https://doi.org/10.1007/s10255-013-0265-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-013-0265-8

Keywords

2000 MR Subject Classification

Navigation