Skip to main content
Log in

The vibration isolation proprieties of an X-shaped structure with enhanced high-static and low-dynamic stiffness via torsional magnetic negative stiffness mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Bionic X-shaped structure is widely studied for low-frequency vibration isolation. In this paper, an X-shaped structure with torsional magnet negative stiffness (TMNS) mechanisms and torsion springs is proposed to enhance the high-static and low-dynamic stiffness characteristics. The TMNS contains multiple pairs of inner and outer tile permanent magnets, and can generate periodic torsional negative stiffness. With the compensation of torsion springs, the QZS point can be realized flexibly within the whole stroke, and one or multiple QZS regions can be obtained. Considering the nonlinear inertia caused by TMNS mass, the system motion equation is established and the displacement transmissibility is solved by harmonic balance method (HBM). The results show that the nonlinear inertia causes the system to experience anti-resonance phenomenon, meanwhile, the resonance frequency slightly shifts to the left. Compared to the typical QZS isolator or the classic X-shaped structure with vertical spring, the proposed model possesses higher equivalent static stiffness, and can achieve better low-frequency vibration isolation performance. An experimental prototype is fabricated, and its static nonlinear property as well as absolute displacement transmissibility are tested. The validity of proposed model is verified by comparing the experimental results with theoretical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig.20

Similar content being viewed by others

References

  1. Ramírez, D.F.L., González, P.E.T., Ferguson, N., et al.: Recent advances in shock vibration isolation: An overview and future possibilities. ASME. Appl. Mech. Rev. 71(6), 060802 (2019). https://doi.org/10.1115/1.4044190

    Article  Google Scholar 

  2. Liu, C.C., Jing, X.J., Daley, S., Li, F.M.: Recent advances in micro-vibration isolation. Mech. Syst. Sig. Process. 56, 55–80 (2015)

    Article  Google Scholar 

  3. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  4. Li, H., Li, Y.C., Li, J.C.: Negative stiffness devices for vibration isolation applications: A review. Adv. Struct. Eng. 23(8), 1739–1755 (2020)

    Article  Google Scholar 

  5. Gatti, G., Brennan, M.J., Tang, B.: Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech. Syst. Signal Process. 125, 4–20 (2019)

    Article  Google Scholar 

  6. Carrella, A., Brennan, M.J., Waters, T.P., et al.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012)

    Article  Google Scholar 

  7. Shaw, A.D., Neild, S.A., Wagg, D.J.: Dynamic analysis of high static low dynamic stiffness vibration isolation mounts. J. Sound Vib. 332, 1437–1455 (2013)

    Article  Google Scholar 

  8. Kovacica, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315, 700–711 (2008)

    Article  Google Scholar 

  9. Hao, Z.F., Cao, Q.J., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87, 987–1014 (2017)

    Article  Google Scholar 

  10. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301, 678–689 (2007)

    Article  Google Scholar 

  11. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330, 6311–6335 (2011)

    Article  Google Scholar 

  12. Zheng, Y.S., Zhang, X.N., Luo, Y.J., et al.: Design and experiment of a high-static–low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)

    Article  Google Scholar 

  13. Yan, B., Yu, N., Wang, Z.H., et al.: Lever-type quasi-zero stiffness vibration isolator with magnetic spring. J. Sound Vib. 527, 116865 (2022)

    Article  Google Scholar 

  14. Wang, Q., Zhou, J.X., Wang, K., et al.: Design and experimental study of a two-stage nonlinear vibration isolators with quasi-zero stiffness. Commun. Nonlinear Sci. Numer. Simul. 122, 107246 (2023)

    Article  MathSciNet  Google Scholar 

  15. Deng, L., Sun, S.S., Wu, Q.H., et al.: A new magnetorheological quasi-zero stiffness vibration isolation system with large zero stiffness range and highly stable characteristics. Nonlinear Dyn. 111, 18631–18653 (2023)

    Article  Google Scholar 

  16. Zhang, Y., Liu, Q.H., Lei, Y.G., et al.: Circular Halbach negative stiffness isolating from torsional vibration: Design, modeling and experiments. Mech. Syst. Signal Process. 202, 110711 (2023)

    Article  Google Scholar 

  17. Zuo, S., Wang, D.Y., Zhang, Y.S., et al.: Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 220, 107146 (2022)

    Article  Google Scholar 

  18. Zhu, G.N., Cao, Q.J., Chen, Y.S.: An archetypal zero- or quasi-zero-stiffness model with three degrees of freedom based upon an inverse method. Nonlinear Dyn. 111, 2029–2057 (2023)

    Article  Google Scholar 

  19. Huang, X.C., Liu, X.T., Sun, J.Y., et al.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333, 1132–1148 (2014)

    Article  Google Scholar 

  20. Yuan, S.J., Sun, Y., Zhao, J.L., et al.: A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring. J. Sound Vib. 482, 115449 (2020)

    Article  Google Scholar 

  21. Ramirez, D.F.L., Ferguson, N.S., Brennan, M.J., et al.: An experimental nonlinear low dynamic stiffness device for shock isolation. J. Sound Vib. 347, 1–13 (2015)

    Article  Google Scholar 

  22. Palomares, E., Nieto, A.J., Morales, A.L., et al.: Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system. J. Sound Vib. 414, 31–42 (2018)

    Article  Google Scholar 

  23. Yu, B., Liu, H., Fan, D.P., et al.: Design of quasi-zero stiffness compliant shock isolator under strong shock excitation. Precis. Eng. 78, 47–59 (2022)

    Article  Google Scholar 

  24. Liu, Y.H., Yang, J., Yi, X.S., et al.: Enhanced vibration suppression using diatomic acoustic metamaterial with negative stiffness mechanism. Eng. Struct. 271, 114939 (2022)

    Article  Google Scholar 

  25. Lin, Q.D., Zhou, J.X., Wang, K., et al.: Three-dimensional quasi-zero-stiffness metamaterial for low-frequency and wide complete band gap. Compos. Struct. 307, 116656 (2023)

    Article  Google Scholar 

  26. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315, 700–711 (2008)

    Article  Google Scholar 

  27. Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99, 1823–1839 (2020)

    Article  Google Scholar 

  28. Hao, Z.F., Cao, Q.J.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound Vib. 340, 61–79 (2015)

    Article  Google Scholar 

  29. Yang, J., Xiong, Y.P., Xing, J.T.: Nonlinear power flow analysis of the Duffing oscillator. Mech. Syst. Signal Process. 45, 563–578 (2014)

    Article  Google Scholar 

  30. Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332, 167–218 (2013)

    Article  Google Scholar 

  31. Wu, Z.J., Jing, X.J., Bian, J., et al.: Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspir. Biomim. 10, 056015 (2015)

    Article  Google Scholar 

  32. Jing, X.J., Chai, Y.Y., Chao, X., et al.: In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms. Mech. Syst. Signal Process. 170, 108267 (2022)

    Article  Google Scholar 

  33. Jing, X.J.: The X-structure/mechanism approach to beneficial nonlinear design in engineering. Appl. Math. Mech. (Engl. Edn.) 43, 979–1000 (2022)

    Article  Google Scholar 

  34. Jin, G.X., Wang, Z.H., Yang, T.Z.: Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Appl. Math. Mech. (Engl. Edn.) 43, 813–824 (2022)

    Article  MathSciNet  Google Scholar 

  35. Sun, X.T., Jing, X.J., Xu, J., et al.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333, 2404–2420 (2014)

    Article  Google Scholar 

  36. Bian, J., Jing, X.J.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. 125, 21–51 (2019)

    Article  Google Scholar 

  37. Feng, X., Jing, X.J.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812 (2019)

    Article  Google Scholar 

  38. Yu, Y., Jiang, Q.B., Fu, Q.D., et al.: The X-shaped structure with nonlinear positive stiffness compensation for low-frequency vibration isolation. Int. J. Mech. Sci. 259, 108598 (2023)

    Article  Google Scholar 

  39. Chai, Y.Y., Jing, X.J., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022)

    Article  Google Scholar 

  40. Wang, Y., Jing, X.J.: Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019)

    Article  Google Scholar 

  41. Han, H.S., Sorokin, V., Tang, L.H., et al.: A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube. Nonlinear Dyn. 105, 1313–1325 (2021)

    Article  Google Scholar 

  42. Liu, B.Y., Gu, L., Dong, M.M.: Design and characteristic analysis of an X-shaped negative stiffness structure. Acta Mech. 233, 4549–4587 (2022)

    Article  Google Scholar 

  43. Niu, M.Q., Chen, L.Q.: Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mech. Syst. Signal Process. 179, 109348 (2022)

    Article  Google Scholar 

  44. Gatti, G.: A K-shaped spring configuration to boost elastic potential energy. Smart Mater. Struct. 28, 077002 (2019)

    Article  Google Scholar 

  45. Kim, G.W., Kan, J.: The V-shaped band-stop vibration isolator inspired by middle ear. Appl. Acoust. 150, 162–168 (2019)

    Article  Google Scholar 

  46. Zhou, S.H., Xu, P.Z., Hou, B.W., et al.: Dynamic characteristics analysis of bilayer bio-inspired X-shaped vibration isolation structure. Int. J. Non-Linear Mech. 154, 104447 (2023)

    Article  Google Scholar 

  47. Yu, Y.H., Yao, G., Wu, Z.H.: Nonlinear primary responses of a bilateral supported X-shape vibration reduction structure. Mech. Syst. Signal Process. 140, 106679 (2020)

    Article  Google Scholar 

  48. Zhou, S.H., Zhang, D.S., Hou, B.W., et al.: Vibration isolation performance analysis of a bilateral supported bio-inspired anti-vibration control system. Appl. Math. Mech. (Engl. Edn.) 44, 759–772 (2023)

    Article  MathSciNet  Google Scholar 

  49. Hu, F.Z., Jing, X.J.: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs. Nonlinear Dyn. 91, 157–185 (2018)

    Article  Google Scholar 

  50. Jiang, G.Q., Jing, X.J., Guo, Y.Q.: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech. Syst. Signal Process. 138, 106552 (2020)

    Article  Google Scholar 

  51. Bian, J., Jing, X.J.: Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 101, 2195–2222 (2020)

    Article  Google Scholar 

  52. Shi, X.J., Xu, J., Chen, T.K.: et, al. Bionic vibration isolator inspired by goat hind limb. J. Bionic Eng. 20, 2194–2208 (2023)

    Article  Google Scholar 

  53. Yan, G., Zou, H.X., Wang, S., et al.: Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 478, 115344 (2020)

    Article  Google Scholar 

  54. Wang, Y., Jing, X.J., Dai, H.H., et al.: Subharmonics and ultra-subharmonics of a bio-inspired nonlinear isolation system. Int. J. Mech. Sci. 152, 167–184 (2019)

    Article  Google Scholar 

  55. Xiong, X., Wang, Y., Li, J.Q., et al.: Internal resonance analysis of bio-inspired X-shaped structure with nonlinear vibration absorber. Mech. Syst. Signal Process. 185, 109809 (2023)

    Article  Google Scholar 

  56. Dai, W., Yang, J.: Vibration transmission and energy flow of impact oscillators with nonlinear motion constraints created by diamond-shaped linkage mechanism. Int. J. Mech. Sci. 194, 106212 (2021)

    Article  Google Scholar 

  57. Jing, X.J., Zhu, Z.H., Guo, Y.Q., et al.: Nonlinear inertia and its effect within an X-shaped mechanism – Part II: nonlinear influences and experimental validations. Mech. Syst. Signal Process. 200, 110591 (2023)

    Article  Google Scholar 

  58. Dai, W., Shi, B.Y., Yang, J.: Vibration isolation performance enhancement using hybrid nonlinear inerter and negative stiffness based on linkage mechanism. J. Vib. Eng. Technol. 12, 837–855 (2023)

    Article  Google Scholar 

  59. Shi, B.Y., Dai, W., Yang, J.: Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism. Nonlinear Dyn. 109, 419–442 (2022)

    Article  Google Scholar 

  60. Pan, H.H., Jing, X.J., Sun, W.C., et al.: Analysis and design of a bio-inspired vibration sensor system in noisy environment. IEEE/ASME Trans. Mech. 23, 845–855 (2018)

    Article  Google Scholar 

  61. Li, M., Jing, X.J.: A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier: design, analysis, and experimental tests. Energy Convers. Manage. 244, 114466 (2021)

    Article  Google Scholar 

  62. Fang, S.T., Chen, K.Y., Lai, Z.H., et al.: A bio-inspired system for simultaneous vibration isolation and energy harvesting in post-capture spacecraft. Mech. Syst. Signal Process. 199, 110466 (2023)

    Article  Google Scholar 

  63. Dai, H.H., Jing, X.J., Sun, C., et al.: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture. Mech. Syst. Signal Process. 109, 111–133 (2018)

    Article  Google Scholar 

  64. Li, Z.C., Jing, X.J., Yu, J.Y.: Fault detection based on a bio-inspired vibration sensor system. IEEE Access 6, 10867–10877 (2018)

    Article  Google Scholar 

  65. Zhao, Z.W., Yu, L., Hu, W.B.: Self-locking mechanism of foldable grid structures and capability evaluation of their structural units. Structures 27, 583–594 (2020)

    Article  Google Scholar 

  66. Lu, C.J., Zhao, H.B.: Geometric parameter design of self-locking foldable latticed shells in deployment process. Adv. Mater. Res. 446–449, 400–403 (2012)

    Article  Google Scholar 

  67. Ravaud, R., Lemarquand, V., Lemarquand, G.: Analytical design of permanent magnet radial couplings. IEEE Trans. Magn. 46, 3860–3865 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The National Key Research and Development Program of China (Grant No. 2019YFB2006402) supports this work and all authors deeply appreciate it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrun Zhang.

Ethics declarations

Conflict of interest:

The authors declare that there are no any conflicts of interest in this work.

Data availability:

The datasets generated and/or analyzed during this work are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Theoretical model of magnetic torque.

For the two tile magnets shown in Fig. 

Fig. 21
figure 21

The configuration schematic of two tile magnets

21, the azimuthal field projected at a point \({\varvec{P}}\left( {{\varvec{r}}_{0} , \psi_{0} , z_{0} } \right)\) in the outer magnet onto an observation point \({\varvec{N}}\left( {r, \psi , z} \right)\) in the inner magnet can be expressed as [67]

$$ \begin{array}{*{20}c} {H_{\varphi } \left( {r,\varphi ,z} \right) = \frac{{B_{r} }}{{4\pi u_{0} }}\int\limits_{{r_{3} }}^{{r_{4} }} {\int\limits_{{\psi_{3} }}^{{\psi_{4} }} {\int\limits_{{z_{3} }}^{{z_{4} }} {\frac{{\left( {\overrightarrow {PN} \cdot \overrightarrow {{u_{\varphi } }} } \right)}}{{|\overrightarrow {PN} |^{3} }}} } } dr_{0} d\psi_{0} dz_{0} } \\ \end{array} $$
(A1)

with

$$ \begin{array}{*{20}c} {\overrightarrow {PM} \cdot \overrightarrow {{u_{\theta } }} = - r_{0} \sin \left( {\varphi - \psi_{0} } \right)} \\ \end{array} $$
(A2)
$$ \begin{array}{*{20}c} {|\overrightarrow {PN} |^{3} = \left[ {r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\psi - \psi_{0} } \right) + \left( {z - z_{0} } \right)^{2} } \right]^{\frac{3}{2}} } \\ \end{array} $$
(A3)

where \(B_{r}\) is the residual magnetic flux density of permanent magnets, \(\mu_{0}\) is the permeability of vacuum, \(r_{1} ,r_{2}\) is the inner and outer radius of inner PM, \(r_{3} ,r_{4}\) is the inner and outer radius of outer PM, \(z_{1} ,z_{2}\) is the lower and upper axial abscissa of inner PM, \(z_{3} ,z_{4}\) is the lower and upper axial abscissa of outer PM, \(\psi_{1} ,\psi_{2}\) is the angular abscissa of inner PM, \(\psi_{3} ,\psi_{4}\) is the angular abscissa of outer PM.

Substituting Eqs. (A2) (A3) into Eq. (A1) and integrating with respect to \(r_{0}\), the expression of the azimuthal field is given by

$$ \begin{array}{*{20}c} {H_{\varphi } \left( {r,\varphi ,z} \right) = \frac{{B_{r} }}{{4\pi u_{0} }}\sum\limits_{i = 3}^{4} {( - 1)^{i + 1} \int\limits_{{\psi_{3} }}^{{\psi_{4} }} {\int\limits_{{z_{3} }}^{{z_{4} }} {\frac{{ - r_{i} \sin \left( {\psi - \psi_{0} } \right)}}{{\left[ {r^{2} + r_{i}^{2} - 2rr_{i} \cos \left( {\psi - \psi_{0} } \right) + \left( {z - z_{0} } \right)^{2} } \right]^{\frac{3}{2}} }}} } } d\psi_{0} dz_{0} } \\ \end{array} $$
(A4)

The moment between any two magnets can be derived as

$$ \begin{array}{*{20}c} {T_{pq} \left( \alpha \right) = B_{r} r_{2}^{2} \int\limits_{{z_{1} }}^{{z_{2} }} {\int\limits_{{\psi_{1} }}^{{\psi_{2} }} {H_{\psi } \left( {r_{2} ,\psi ,z} \right)d\psi dz - B_{r} r_{1}^{2} } } \int\limits_{{z_{1} }}^{{z_{2} }} {\int\limits_{{\psi_{1} }}^{{\psi_{2} }} {H_{\varphi } \left( {r_{1} ,\psi ,z} \right)d\psi dz} } } \\ \end{array} $$
(A5)

A simplified expression for the moment can be obtained by integrating with respect to \(\psi\) and \(z\) as

$$ \begin{array}{*{20}c} {T_{pq} \left( \alpha \right) = \frac{{B_{r}^{2} }}{{4\pi u_{0} }}\left[ {\mathop \sum \limits_{i,k,m = 1}^{2} \mathop \sum \limits_{j,l,n = 3}^{4} ( - 1)^{i + j + k + l + m + n} r_{i} r_{j} M_{1} + \mathop \sum \limits_{i,k,m = 1}^{2} \mathop \sum \limits_{j,l = 3}^{4} ( - 1)^{i + j + k + l + m} r_{i} r_{j} M_{2} } \right]} \\ \end{array} $$
(A6)

with

$$ M_{1} = - \sqrt {\left( {r_{i} - r_{j} } \right)^{2} + \left( {z_{k} - z_{l} } \right)^{2} } \times F^{*} \left[ {\frac{{\psi_{m} - \psi_{n} }}{2}, - \frac{{4r_{i} r_{j} }}{{\left( {r_{i} - r_{j} } \right)^{2} + \left( {z_{k} - z_{l} } \right)^{2} }}} \right] $$
$$ M_{2} = \left( {z_{l} - z_{k} } \right)\mathop \smallint \limits_{{\psi_{3} }}^{{\psi_{4} }} {\text{log}}\left[ {\sqrt {r_{i}^{2} + r_{j}^{2} + \left( {z_{l} - z_{k} } \right)^{2} - 2r_{i} r_{j} {\text{cos}}\left( {\psi_{m} - \psi } \right)} - \left( {z_{l} - z_{k} } \right)} \right]d\psi $$

Here, \(F^{*} \left[ {{\Phi },m} \right]\) is the elliptic integrals of the second kind,

$$ F^{*} \left[ {\phi ,m} \right] = \mathop \smallint \limits_{0}^{\phi } \sqrt {1 - m\sin^{2} \psi } d\psi $$

Derivation of Eq. (A6) with respect to the rotation angle \(\alpha\), an expression for the torsional stiffness can be deduced as

$$ \begin{array}{*{20}c} {K_{pq} \left( \alpha \right) = \frac{{B_{r}^{2} }}{{4\pi u_{0} }}\left[ {\mathop \sum \limits_{i,k,m = 1}^{2} \mathop \sum \limits_{j,l,n = 3}^{4} ( - 1)^{i + j + k + l + m + n} r_{i} r_{j} K_{1} + \mathop \sum \limits_{i,k,m = 1}^{2} \mathop \sum \limits_{j,l = 3}^{4} ( - 1)^{i + j + k + l + m} r_{i} r_{j} K_{2} } \right]} \\ \end{array} $$
(A7)

with

$$ K_{1} = - \sqrt {\left( {r_{i} - r_{j} } \right)^{2} + \left( {z_{k} - z_{l} } \right)^{2} } \times \frac{1}{2}\sqrt {1 + \frac{{4r_{i} r_{j} }}{{\left( {r_{i} - r_{j} } \right)^{2} + \left( {z_{k} - z_{l} } \right)^{2} }}\sin^{2} \left( {\frac{{\psi_{m} - \psi_{n} }}{2}} \right)} $$
$$ K_{2} = \left( {z_{l} - z_{k} } \right)\mathop \sum \limits_{s = 3}^{4} ( - 1)^{s} {\text{log}}\left[ {\sqrt {r_{i}^{2} + r_{j}^{2} + \left( {z_{l} - z_{k} } \right)^{2} - 2r_{i} r_{j} {\text{cos}}\left( {\psi_{m} - \psi_{s} } \right)} - \left( {z_{l} - z_{k} } \right)} \right] $$

For the proposed TMNS with \(p\) pairs of inner and outer magnets, its torque and torsional stiffness can be expressed as

$$ \begin{array}{*{20}c} {T_{m} \left( \alpha \right) = p\mathop \sum \limits_{q = 1}^{p} T_{pq} } \\ \end{array} $$
(A8)
$$ \begin{array}{*{20}c} {K_{m} \left( \alpha \right) = p\mathop \sum \limits_{q = 1}^{p} K_{pq} } \\ \end{array} $$
(A9)

For the convenience of analysis, a constant torque \(T_{m0}\) is defined as

$$ \begin{array}{*{20}c} {T_{m0} = \frac{{B_{r}^{2} }}{{4\pi \mu_{0} }}R_{i}^{3} ,} \\ \end{array} $$
(A10)

where \(R_{i}\) is the shaft radius of proposed system shown in Fig. 1, then the dimensionless torque and torsional stiffness generated by TMNS can be obtained as

$$ \begin{array}{*{20}c} {\hat{T}_{m} \left( \alpha \right) = \frac{{T_{m} \left( \alpha \right)}}{{T_{m0} }}, \hat{K}_{m} \left( \alpha \right) = \frac{{K_{m} \left( \alpha \right)}}{{T_{m0} }}.} \\ \end{array} $$
(A11)

Appendix B

$$ \begin{array}{*{20}c} {F = \frac{dV}{{dy}} = 2T_{m} \left( \alpha \right)\frac{d\alpha }{{dy}} + 2k_{t} \alpha \frac{d\alpha }{{dy}} = \frac{{2\left( {T_{m} \left( \alpha \right) + k_{t} \alpha } \right)}}{{nL\sqrt {1 - \left( {\sin \theta_{0} - \frac{y}{2nL}} \right)^{2} } }}} \\ \end{array} $$
(B1)
$$ \begin{array}{*{20}c} {K = \frac{dF}{{dy}} = 2\frac{{K_{m} \left( \alpha \right) + k_{t} }}{{n^{2} L^{2} \left[ {1 - \left( {\sin \theta_{0} - \frac{y}{2nL}} \right)^{2} } \right]}} - 2\frac{{\left( {T_{m} \left( \alpha \right) + k_{t} \alpha } \right)\left( {\sin \theta_{0} - \frac{y}{2nL}} \right)}}{{2n^{2} L^{2} \left[ {1 - \left( {\sin \theta_{0} - \frac{y}{2nL}} \right)^{2} } \right]^{\frac{3}{2}} }}} \\ \end{array} $$
(B2)

Appendix C

$$ \begin{array}{*{20}c} {f_{1} = L^{2} \left( {\frac{d\varphi }{{dy_{r} }}} \right)^{2} = \frac{1}{{4n^{2} \left[ {1 - \left( {\sin \beta_{0} - \frac{{\hat{y}_{r} }}{2n}} \right)^{2} } \right]}}} \\ \end{array} $$
(C1)
$$ \begin{array}{*{20}c} {f_{2} = L^{3} \frac{d\varphi }{{dy_{r} }}\frac{{d^{2} \varphi }}{{dy_{r}^{2} }} = - \frac{{\left( {\sin \theta_{0} - \frac{{\hat{y}_{r} }}{2n}} \right)}}{{8n^{3} \left[ {1 - \left( {\sin \theta_{0} - \frac{{\hat{y}_{r} }}{2n}} \right)^{2} } \right]^{2} }}} \\ \end{array} $$
(C2)
$$ \begin{array}{*{20}c} {f_{3} = \frac{{2\left( {\hat{T}_{m} \left( \alpha \right) + \hat{k}_{t} \alpha } \right)}}{{n\sqrt {1 - \left( {\sin \theta_{0} - \frac{{\hat{y}_{r} }}{2n}} \right)^{2} } }} - \frac{L}{{T_{m0} }}\left( {M + \frac{1}{n}m_{T} } \right)g} \\ \end{array} $$
(C3)
$$ \begin{array}{*{20}c} {\tilde{f}_{1} = \eta_{0} + \eta_{1} \hat{y}_{r} + \eta_{2} \hat{y}_{r}^{2} + \eta_{3} \hat{y}_{r}^{3} } \\ \end{array} $$
(C4)
$$ \begin{array}{*{20}c} {\tilde{f}_{2} = \chi_{0} + \chi_{1} \hat{y}_{r} + \chi_{2} \hat{y}_{r}^{2} + \chi_{3} \hat{y}_{r}^{3} } \\ \end{array} $$
(C5)
$$ \begin{array}{*{20}c} {\tilde{f}_{3} = \kappa_{0} + \kappa_{1} \hat{y}_{r} + \kappa_{2} \hat{y}_{r}^{2} + \kappa_{3} \hat{y}_{r}^{3} } \\ \end{array} $$
(C6)

Appendix D

$$ \begin{array}{*{20}c} { - \left[ {1 + \varepsilon \left( {\frac{{3a^{2} \eta_{2} }}{4} + \eta_{0} } \right)} \right] + \varepsilon \left( {\frac{{a^{4} \chi_{3} }}{8} + \frac{{a^{2} \chi_{1} }}{4}} \right) + \frac{1}{{{\Omega }^{2} }}\left( {\frac{{3a^{2} \kappa_{3} }}{4} + \kappa_{1} } \right) = \frac{{\hat{z}_{0} }}{a}\cos \gamma } \\ \end{array} $$
(D1)
$$ \begin{array}{*{20}c} { - \frac{2}{{\Omega }}\left[ {\xi_{1} + n_{x} \xi_{2} \left( {\frac{{a^{2} \eta_{2} }}{4} + \eta_{0} } \right)} \right] = \frac{{\hat{z}_{0} }}{a}\sin \gamma } \\ \end{array} $$
(D2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Jiang, Q., Yu, K. et al. The vibration isolation proprieties of an X-shaped structure with enhanced high-static and low-dynamic stiffness via torsional magnetic negative stiffness mechanism. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09559-y

Keywords

Navigation