Skip to main content
Log in

Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Passive vibration isolation is always preferable in most engineering practices. To this aim, a novel, compact and passive vibration isolation mount is studied in this paper, which is designed by using the X-shaped structure with a much smaller size. The novel mount is adjustable to different payloads due to a special oblique and tunable spring mechanism, and of high vibration isolation performance with a wider quasi-zero-stiffness range due to the deliberate employment of negative stiffness of the X-shaped structure. The X-shaped structure has been well studied recently due to its excellent nonlinear stiffness and damping properties. In this study, it is for the first time to explore the utilization of the negative stiffness property within the X-shaped structure such that the resulting design, the X-structured mount (X-mount), can have an obviously larger vibration displacement range which maintains the quasi-zero-stiffness property. A special oblique spring is thus introduced such that the overall equivalent stiffness of the X-mount can be much easily adjusted according to different payloads. Systematic parametric study is conducted to reveal the critical design parameters and their relationship with vibration isolation performance. A prototype and experimental validations are implemented to validate the theoretical results. It is believed that the X-mount would provide an innovative technical upgrade to many existing vibration isolation mounts in various engineering practices and it could also be the first prototyped mount which can offer adjustable quasi-zero stiffness and adjustable loading capacity conveniently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Availability of data and material (data transparency)

Not applicable.

Code availability (software application or custom code)

Not applicable.

References

  1. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  2. Liu, C., Jing, X., Daley, S., Li, F.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015). https://doi.org/10.1016/j.ymssp.2014.10.007

    Article  Google Scholar 

  3. Gao, X., Chen, Q., Liu, X.: Nonlinear dynamics and design for a class of piecewise smooth vibration isolation system. Nonlinear Dyn. 84(3), 1715–1726 (2016). https://doi.org/10.1007/s11071-016-2599-2

    Article  MathSciNet  Google Scholar 

  4. Cao, S., Ozbulut, O.E., Wu, S., Sun, Z., Deng, J.: Multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges. Smart Mater. Struct. 29(5), 2020 (2020). https://doi.org/10.1088/1361-665x/ab802b

    Article  Google Scholar 

  5. Mofidian, S.M.M., Bardaweel, H.: Displacement transmissibility evaluation of vibration isolation system employing nonlinear-damping and nonlinear-stiffness elements. J. Vib. Control 24(18), 4247–4259 (2017). https://doi.org/10.1177/1077546317722702

    Article  MathSciNet  Google Scholar 

  6. Xu, J., et al.: Design of quasi-zero stiffness joint actuator and research on vibration isolation performance. J. Sound Vib. 479, 2020 (2020). https://doi.org/10.1016/j.jsv.2020.115367

    Article  Google Scholar 

  7. Dong, G., Zhang, Y., Luo, Y., Xie, S., Zhang, X.: Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping. Nonlinear Dyn. 93(4), 2339–2356 (2018). https://doi.org/10.1007/s11071-018-4328-5

    Article  Google Scholar 

  8. Kamesh, D., Pandiyan, R., Ghosal, A.: Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft. J. Sound Vib. 329(17), 3431–3450 (2010). https://doi.org/10.1016/j.jsv.2010.03.008

    Article  Google Scholar 

  9. Zhou, J., Xiao, Q., Xu, D., Ouyang, H., Li, Y.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017). https://doi.org/10.1016/j.jsv.2017.01.021

    Article  Google Scholar 

  10. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009). https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  11. Shaw, A.D., Neild, S.A., Wagg, D.J.: Dynamic analysis of high static low dynamic stiffness vibration isolation mounts. J. Sound Vib. 332(6), 1437–1455 (2013). https://doi.org/10.1016/j.jsv.2012.10.036

    Article  Google Scholar 

  12. Cai, C., Zhou, J., Wu, L., Wang, K., Xu, D., Ouyang, H.: Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 236, 2020 (2020). https://doi.org/10.1016/j.compstruct.2020.111862

    Article  Google Scholar 

  13. Sun, X., Zhang, C., Fu, Q., Zhang, H., Dong, H.: Measurement and modelling for harmonic dynamic characteristics of a liquid-filled isolator with a rubber element and high-viscosity silicone oil at low frequency. Mech. Syst. Signal Process. 140, 2020 (2020). https://doi.org/10.1016/j.ymssp.2020.106659

    Article  Google Scholar 

  14. Zheng, Y., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness. Mech. Syst. Signal Process. 100, 135–151 (2018). https://doi.org/10.1016/j.ymssp.2017.07.028

    Article  Google Scholar 

  15. Gatti, G.: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Commun. Nonlinear Sci. Numer. Simul. 83, 2020 (2020). https://doi.org/10.1016/j.cnsns.2019.105143

    Article  MathSciNet  Google Scholar 

  16. Yan, G., et al.: Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 478, 2020 (2020). https://doi.org/10.1016/j.jsv.2020.115344

    Article  Google Scholar 

  17. de Haro Silva, L., Paupitz Gonçalves, P.J., Wagg, D.: On the dynamic behavior of the Zener model with nonlinear stiffness for harmonic vibration isolation. Mech. Syst. Signal Process. 112, 343–358 (2018). https://doi.org/10.1016/j.ymssp.2018.04.037

    Article  Google Scholar 

  18. Wu, Z., Jing, X., Bian, J., Li, F., Allen, R.: Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspir Biomim 10(5), 056015 (2015). https://doi.org/10.1088/1748-3190/10/5/056015

    Article  Google Scholar 

  19. Liu, C., Yu, K.: A high-static–low-dynamic-stiffness vibration isolator with the auxiliary system. Nonlinear Dyn. 94(3), 1549–1567 (2018). https://doi.org/10.1007/s11071-018-4441-5

    Article  MathSciNet  Google Scholar 

  20. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012). https://doi.org/10.1016/j.ijmecsci.2011.11.012

    Article  Google Scholar 

  21. Tang, B., Brennan, M.J.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014). https://doi.org/10.1016/j.ijmecsci.2014.02.019

    Article  Google Scholar 

  22. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013). https://doi.org/10.1016/j.ijmecsci.2013.02.009

    Article  Google Scholar 

  23. Lan, C.-C., Yang, S.-A., Wu, Y.-S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333(20), 4843–4858 (2014). https://doi.org/10.1016/j.jsv.2014.05.009

    Article  Google Scholar 

  24. Gatti, G., Brennan, M.J., Tang, B.: Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech. Syst. Signal Process. 125, 4–20 (2019). https://doi.org/10.1016/j.ymssp.2018.08.024

    Article  Google Scholar 

  25. Huang, X., Chen, Y., Hua, H., Liu, X., Zhang, Z.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015). https://doi.org/10.1016/j.jsv.2015.02.001

    Article  Google Scholar 

  26. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008). https://doi.org/10.1016/j.jsv.2007.12.019

    Article  Google Scholar 

  27. Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332(14), 3377–3389 (2013). https://doi.org/10.1016/j.jsv.2013.01.034

    Article  Google Scholar 

  28. Wang, X., Zhou, J., Xu, D., Ouyang, H., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87(1), 633–646 (2016). https://doi.org/10.1007/s11071-016-3065-x

    Article  Google Scholar 

  29. Jiang, Y., Song, C., Ding, C., Xu, B.: Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. J. Sound Vib. 477, 2020 (2020). https://doi.org/10.1016/j.jsv.2020.115346

    Article  Google Scholar 

  30. Ye, K., Ji, J.C., Brown, T.: Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 471, 2020 (2020). https://doi.org/10.1016/j.jsv.2020.115198

    Article  Google Scholar 

  31. Ding, H., Chen, L.-Q.: Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dyn. 95(3), 2367–2382 (2018). https://doi.org/10.1007/s11071-018-4697-9

    Article  MATH  Google Scholar 

  32. Yan, B., Ma, H., Jian, B., Wang, K., Wu, C.: Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric permanent magnets. Nonlinear Dyn. 97(4), 2499–2519 (2019). https://doi.org/10.1007/s11071-019-05144-w

    Article  MATH  Google Scholar 

  33. Donmez, A., Cigeroglu, E., Ozgen, G.O.: An improved quasi-zero stiffness vibration isolation system utilizing dry friction damping. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05685-5

    Article  Google Scholar 

  34. Wang, S., Xin, W., Ning, Y., Li, B., Hu, Y.: Design, experiment, and improvement of a quasi-zero-stiffness vibration isolation system. Appl. Sci. 10(7), 2020 (2020). https://doi.org/10.3390/app10072273

    Article  Google Scholar 

  35. Xiao, Z., Jing, X., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332(5), 1335–1354 (2013). https://doi.org/10.1016/j.jsv.2012.11.001

    Article  Google Scholar 

  36. Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013). https://doi.org/10.1016/j.jsv.2012.09.010

    Article  Google Scholar 

  37. Johnson, D.R., Thota, M., Semperlotti, F., Wang, K.W.: On achieving high and adaptable damping via a bistable oscillator. Smart Mater. Struct. 22(11), 115027 (2013). https://doi.org/10.1088/0964-1726/22/11/115027

    Article  Google Scholar 

  38. Sun, J., Huang, X., Liu, X., Xiao, F., Hua, H.: Study on the force transmissibility of vibration isolators with geometric nonlinear damping. Nonlinear Dyn. 74(4), 1103–1112 (2013). https://doi.org/10.1007/s11071-013-1027-0

    Article  Google Scholar 

  39. Jing, X.J., Lang, Z.Q., Billings, S.A.: Output frequency response function-based analysis for nonlinear Volterra systems. Mech. Syst. Signal Process. 22(1), 102–120 (2008). https://doi.org/10.1016/j.ymssp.2007.06.010

    Article  Google Scholar 

  40. Jing, X.J., Lang, Z.Q., Billings, S.A.: Output frequency properties of nonlinear systems. Int. J. Non-Linear Mech. 45(7), 681–690 (2010). https://doi.org/10.1016/j.ijnonlinmec.2010.04.002

    Article  Google Scholar 

  41. Jing, X.J., Lang, Z.Q., Billings, S.A.: Nonlinear influence in the frequency domain: alternating series. Syst. Control Lett. 60(5), 295–309 (2011). https://doi.org/10.1016/j.sysconle.2011.01.003

    Article  MathSciNet  MATH  Google Scholar 

  42. Karnovskiĭ, I.A.: Theory of Vibration Protection. Springer, Switzerland (2016)

    Book  Google Scholar 

  43. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018). https://doi.org/10.1016/j.jsv.2018.02.052

    Article  Google Scholar 

  44. Bian, J., Jing, X.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. (2018). https://doi.org/10.1016/j.ymssp.2018.02.014

    Article  Google Scholar 

  45. Feng, X., Jing, X.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812 (2019). https://doi.org/10.1016/j.ymssp.2018.08.040

    Article  Google Scholar 

  46. Jing, X., Zhang, L., Feng, X., Sun, B., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019). https://doi.org/10.1016/j.ymssp.2018.09.004

    Article  Google Scholar 

  47. Liu, C., Jing, X., Chen, Z.: Band stop vibration suppression using a passive X-shape structured lever-type isolation system. Mech. Syst. Signal Process. 68–69, 342–353 (2016). https://doi.org/10.1016/j.ymssp.2015.07.018

    Article  Google Scholar 

  48. Sun, X., Jing, X.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66–67, 723–742 (2016). https://doi.org/10.1016/j.ymssp.2015.05.026

    Article  Google Scholar 

  49. Sun, X., Jing, X., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333(9), 2404–2420 (2014). https://doi.org/10.1016/j.jsv.2013.12.025

    Article  Google Scholar 

  50. Jiang, G., Jing, X., Guo, Y.: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech. Syst. Signal Process. 138, 106552 (2020)

    Article  Google Scholar 

Download references

Funding

The work is supported by a general research fund (GRF) of HK RGC (Ref. 15206717) and an innovation and technology fund (ITF) project of HK ITC (ITP/020/19AP)

Author information

Authors and Affiliations

Authors

Contributions

Jing Bian did the simulation and analysis work under supervision of Dr. Xingjian Jing who also provided the research idea, organized the research work and rewrote the paper based on the draft from Jing Bian.

Corresponding author

Correspondence to Xingjian Jing.

Ethics declarations

Conflict of interest

No conflicts of interest by submitting this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, J., Jing, X. Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn 101, 2195–2222 (2020). https://doi.org/10.1007/s11071-020-05878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05878-y

Keywords

Navigation