Skip to main content
Log in

Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents an inerter-based nonlinear vibration isolator with geometrical nonlinearity created by configuring an inerter in a diamond-shaped linkage mechanism. The isolation performance of the proposed nonlinear isolator subjected to force or base-motion excitations is investigated. Both analytical and alternating frequency-time harmonic balance methods as well as numerical integration method are used to obtain the dynamic response. Beneficial performance of the nonlinear isolator is demonstrated by various performance indices including the force and displacement transmissibility as well as power flow variables. It is found that the use of the nonlinear inerter in the isolator can shift and bend the peaks of the transmissibility and time-averaged power flow to the low-frequency range, creating a larger frequency band of effective vibration isolation. It is also shown that the inertance-to-mass ratio and the initial distance of the nonlinear inerter can be effectively tailored to achieve reduced transmissibility and power transmission at interested frequencies. Anti-resonant peaks appear at specific frequency, creating near-zero energy transmission and significantly reducing vibration transmission to a base structure on which the proposed isolator is mounted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control. 47, 1648–1662 (2002)

    Article  MathSciNet  Google Scholar 

  2. Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., Baba, K.: Development of seismic devices applied to ball screw: part 1 basic performance test of RD-series. AIJ J. Technol. Des. 5(8), 239–244 (1999)

    Article  Google Scholar 

  3. Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., Baba, K.: Development of seismic devices applied to ball screw: part 2 performance test and evaluation of RD-series. AIJ J. Technol. Des. 5(9), 255–270 (1999)

    Article  Google Scholar 

  4. Chen, M.Z.Q., Papageorgiou, C., Scheibe, F., Wang, F.-C., Smith, M.C.: The missing mechanical circuit element. IEEE Circuits Syst. Mag. 9(1), 10–26 (2009)

    Article  Google Scholar 

  5. Kawamata, S.: Liquid type mass damper with elongated discharge tube. US Patent. 4, 872, 649. https://patents.google.com/patent/US4872649A/en (1989). Accessed 25 Mar 2022

  6. Kawamata, S., Funaki N., Itoh, Y.: Passive control of building frames by means of liquid dampers sealed by viscoelastic material. In: 12th World Conference on Earthquake Engineering, Auckland, New Zealand. (2000)

  7. Swift, S.J., Smith, M.C., Glover, A.R., Papageorgiou, C., Gartner, B., Houghton, N.E.: Design and modelling of a fluid inerter. Int. J. Control 86(11), 2035–2051 (2013)

    Article  MathSciNet  Google Scholar 

  8. Wang, F.-C., Hsieh, M.-R., Chen, H.-J.: Stability and performance analysis of a full-train system with inerters. Veh. Syst. Dyn. 50(4), 545–571 (2012)

    Article  Google Scholar 

  9. Lazar, I.F., Neild, S.A., Wagg, D.J.: Vibration suppression of cables using tuned inerter dampers. Eng. Struct. 122(1), 62–71 (2016)

    Article  Google Scholar 

  10. Li, Y., Jiang, J.Z., Neild, S.A.: Inerter-based configurations for main-landing-gear shimmy suppression. J. Aircr. 54(2), 684–693 (2017)

    Article  Google Scholar 

  11. Zhang, S.Y., Jiang, J.Z., Neild, S.A.: Optimal configurations for a linear vibration suppression device in a multi-storey building. Struct. Control Health Monit. 24, 1887 (2017)

    Article  Google Scholar 

  12. Li, Y.-Y., Zhang, S.Y., Jiang, J.Z., Neild, S.: Identification of beneficial mass-included inerter-based vibration suppression configurations. J Franklin Inst. 356, 7836–7854 (2019)

    Article  Google Scholar 

  13. Zhu, C., Yang, J., Rudd, C.: Vibration transmission and power flow of laminated composite plates with inerter-based suppression configurations. Int. J. Mech. Sci. 190, 106012 (2021)

    Article  Google Scholar 

  14. Dong, Z., Chronopoulos, D., Yang, J.: Enhancement of wave damping for metamaterial beam structures with embedded inerter-based configurations. Appl. Acoust. 178, 108013 (2021)

    Article  Google Scholar 

  15. Liu, Y., Yang, J., Yi, X., Chronopoulos, D.: Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters. J. Appl. Phys. 131, 105103 (2022)

    Article  Google Scholar 

  16. Shi, B., Yang, J., Jiang, J.Z.: Tuning methods for tuned inerter dampers coupled to nonlinear primary systems. Nonlinear Dyn. 107, 1663–1685 (2022)

    Article  Google Scholar 

  17. Moraes, F.D.H., Silveira, M., Gonçalves, P.J.P.: On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dyn. 93(3), 1325–1340 (2018)

    Article  Google Scholar 

  18. Yang, J., Jiang, J.Z., Neild, S.A.: Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 99, 1823–1839 (2020)

    Article  Google Scholar 

  19. Wang, Y., Wang, R., Meng, H., Zhang, B.: An investigation of the dynamic performance of lateral inerter-based vibration isolator with geometrical nonlinearity. Arch. Appl. Mech. 89, 1953–1972 (2019)

    Article  Google Scholar 

  20. Dong, Z., Shi, B., Yang, J., Li, T.Y.: Suppression of vibration transmission in coupled systems with an inerter-based nonlinear joint. Nonlinear Dyn. 107, 1637–1662 (2022)

    Article  Google Scholar 

  21. Zhang, Z., Lu, Z.-Q., Ding, H., Chen, L.-Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 192–213 (2019)

    Article  Google Scholar 

  22. Wagg, D.J.: A review of the mechanical inerter: historical context, physical realisations and nonlinear applications. Nonlinear Dyn. 104, 13–34 (2021)

    Article  Google Scholar 

  23. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  24. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)

    Article  Google Scholar 

  25. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012)

    Article  Google Scholar 

  26. Goyder, H.G.D., White, R.G.: Vibrational power flow from machines into built-up structures. J. Sound Vib. 68, 59–117 (1980)

    Article  Google Scholar 

  27. Royston, T.J., Singh, R.: Optimization of passive and active non-linear vibration mounting systems based on vibratory power transmission. J. Sound Vib. 194, 295–316 (1996)

    Article  Google Scholar 

  28. Xiong, Y.P., Xing, J.T., Price, W.G.: Interactive power flow characteristics of an integrated equipment-nonlinear isolator-travelling flexible ship excited by sea waves. J. Sound Vib. 287, 245–276 (2005)

    Article  Google Scholar 

  29. Yang, J., Xiong, Y.P., Xing, J.T.: Nonlinear power flow analysis of the Duffing oscillator. Mech. Syst. Signal Process. 45, 563–578 (2014)

    Article  Google Scholar 

  30. Yang, J., Xiong, Y.P., Xing, J.T.: Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci. 115–116, 238–252 (2016)

    Article  Google Scholar 

  31. Shi, B., Yang, J., Rudd, C.: On vibration transmission in oscillating systems incorporating bilinear stiffness and damping elements. Int. J. Mech. Sci. 150, 458–470 (2019)

    Article  Google Scholar 

  32. Dai, W., Yang, J., Shi, B.: Vibration transmission and power flow in impact oscillators with linear and nonlinear constraints. Int. J. Mech. Sci. 168, 105234 (2020)

    Article  Google Scholar 

  33. Von Groll, G., Ewins, D.J.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241, 223–233 (2001)

    Article  Google Scholar 

  34. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New Jersey (2008)

    MATH  Google Scholar 

  35. Cammarano, A., Hill, T.L., Neild, S.A., Wagg, D.J.: Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator. Nonlinear Dyn. 77, 311–320 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant number 12172185 and by the Zhejiang Provincial Natural Science Foundation of China under Grant Number LY22A020006.

Funding

Jian Yang was funded by the National Natural Science Foundation of China under Grant Number 12172185 and by the Zhejiang Provincial Natural Science Foundation of China under Grant Number LY22A020006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Using Eqs. (28), (29) and (43), governing Eq. (14) of the single-DOF oscillator with base-motion excitation (C2 configuration) becomes

$$ \begin{gathered} \left\{ {1 - \left( {1 + \lambda \beta_{0} + \frac{1}{4}\lambda R_{2}^{2} \left( {3\beta_{2} - \gamma_{1} } \right)} \right)\Omega^{2} } \right\}R_{2} \cos \left( {\Omega \tau - \theta } \right) \hfill \\ \quad - 2\zeta_{1} \Omega R_{2} \sin \left( {\Omega \tau - \theta } \right) = Q_{0} \Omega^{2} \cos \Omega \tau . \hfill \\ \end{gathered} $$
(61)

The coefficients of the corresponding harmonic terms in Eq. (61) can be balanced, leading to

$$ \left\{ {1 - \left( {1 + \lambda \beta_{0} + \frac{1}{4}\lambda R_{2}^{2} \left( {3\beta_{2} - \gamma_{1} } \right)} \right)\Omega^{2} } \right\}R_{2} = Q_{0} \Omega^{2} \cos \theta , $$
(62)
$$ - 2\zeta_{1} \Omega R_{2} = - Q_{0} \Omega^{2} \sin \theta . $$
(63)

By using the identity of \(\cos^{2} \phi + \sin^{2} \phi = 1\), Eqs. (62) and (63) can be transformed into

$$ \left\{ {1 - \left( {1 + \lambda \beta_{0} + \frac{1}{4}\lambda R_{2}^{2} \left( {3\beta_{2} - \gamma_{1} } \right)} \right)\Omega^{2} } \right\}^{2} R_{2}^{2} + \left( {2\zeta_{1} \Omega R_{2} } \right)^{2} = Q_{0}^{2} \Omega^{4} , $$
(64)
$$ \frac{{R_{2} }}{{Q_{0} }} = \frac{{\Omega^{2} }}{{\sqrt {\left\{ {1 - \left( {1 + \lambda \beta_{0} + \frac{1}{4}\lambda R_{2}^{2} \left( {3\beta_{2} - \gamma_{1} } \right)} \right)\Omega^{2} } \right\}^{2} + \left( {2\zeta_{1} \Omega } \right)^{2} } }}. $$
(65)

Note that Eq. (65) is obtained by rewriting Eq. (64), which can be solved by using a bisection method to obtain the amplitude \(R_{2}\) of the relative displacement. The phase angle \(\theta\) can then be determined by using Eqs. (62) and (63). When the excitation frequency \(\Omega\) approaching infinity, Eq. (65) becomes

$$ \mathop {\lim }\limits_{\Omega \to \infty } \left( {\frac{{R_{2} }}{{Q_{0} }}} \right) = \frac{1}{{1 + \lambda \beta_{0} + \frac{1}{4}\lambda R_{2}^{2} \left( {3\beta_{2} - \gamma_{1} } \right)}} , $$
(66)

in which, by denoting the corresponding value of \(R_{2}\) as \(R_{2,\infty }\), we have

$$ \left( {1 + \lambda \beta_{0} + \frac{1}{4}\lambda R_{2,\infty }^{2} \left( {3\beta_{2} - \gamma_{1} } \right)} \right)R_{2,\infty } = Q_{0} , $$
(67)

which is a nonlinear algebraic equation which can be solved by a standard bisection method. It shows that the relative displacement amplitude \(R_{2,\infty }\) is only related to the design parameters of \(\lambda , D_{0}\) and \(Q_{0}\) of the isolator.

It is noted that the nondimensional displacement response \(X_{2} \left( \tau \right)\) of the mass in C2 is expressed by

$$ X_{2} \left( \tau \right) = Z_{2} \left( \tau \right) + Q_{0} \cos \Omega \tau \approx R_{2} \cos \left( {\Omega \tau - \theta } \right) + Q_{0} \cos \Omega \tau . $$
(68)

Therefore, the displacement amplitude \(M_{2}\) of the mass in C2 can be obtained as

$$ \begin{gathered} M_{2} = \sqrt {\left( {R_{2} \cos \theta + Q_{0} } \right)^{2} + R_{2}^{2} \sin^{2} \theta } \hfill \\ \quad = \sqrt {R_{2}^{2} + Q_{0}^{2} + 2R_{2}^{2} \left\{ {\frac{1}{{\Omega^{2} }} - \left( {1 + \lambda \beta_{0} + \frac{1}{4}\lambda R_{2}^{2} \left( {3\beta_{2} - \gamma_{1} } \right)} \right)} \right\}} , \hfill \\ \end{gathered} $$
(69)

where Eq. (62) is used for the simplification.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Dai, W. & Yang, J. Performance analysis of a nonlinear inerter-based vibration isolator with inerter embedded in a linkage mechanism. Nonlinear Dyn 109, 419–442 (2022). https://doi.org/10.1007/s11071-022-07564-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07564-7

Keywords

Navigation