Skip to main content
Log in

Derivation of anomalously interacting lumps for the (2+1)-dimensional generalized Korteweg–de Vries equation via degeneracy of lump chains

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates two different novel approaches to degenerate from normally interacting lump chains to anomalously interacting lumps for the generalized Korteweg–de Vries equation. The first direct degeneracy method is to derive the anomalously interacting lumps by adjusting the appropriate phase parameter to make the periods of lump chains with close velocities trend to infinity. The second double degeneracy method is to first derive the anomalously interacting lump chains through the same parameters, and then the anomalously interacting lumps can be similarly obtained by adjusting its period to tend to infinity. Furthermore, anomalously interacting lump chains and lump’s asymptotic behavior are also investigated. These interacting lump chains can provide a more profound understanding of the properties of lump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Kim, B., Akylas, T.R.: On gravity-capillary lumps. Part 2. Two-dimensional Benjamin equation. J. Fluid Mech. 557, 237–256 (2006). https://doi.org/10.1038/nature06402

    Article  MathSciNet  Google Scholar 

  2. Ermolov, A., Mak, K.F., Frosz, M.H., Travers, J.C., Russell, P.S.J.: Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys. Rev. A 92, 033821 (2015). https://doi.org/10.1103/PhysRevA.92.033821

    Article  Google Scholar 

  3. Pelinovsky, D.E., Stepanyants, Y.A., Kivshar, Y.S.: Selffocusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E 55, 5016–5026 (1995). https://doi.org/10.1103/PhysRevE.51.5016

    Article  Google Scholar 

  4. Mironov, V.A., Smirnov, A.I., Smirnov, L.A.: Structure of vortex shedding past potential barriers moving in a Bose–Einstein condensate. J. Exp. Theor. Phys. 110, 877–889 (2010). https://doi.org/10.1134/S1063776110050195

    Article  Google Scholar 

  5. Wang, X., Wei, J.: Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal \(\cal{PT} \) symmetric nonlinear Schrödinger equation. Appl. Math. Lett. 130, 107998 (2022). https://doi.org/10.1016/j.aml.2022.107998

    Article  Google Scholar 

  6. Feng, B.F., Ling, L.M.: Darboux transformation and solitonic solution to the coupled complex short pulse equation. Physica D 437, 133332 (2022). https://doi.org/10.1016/j.physd.2022.133332

    Article  MathSciNet  Google Scholar 

  7. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641–2649 (2023). https://doi.org/10.1007/s11071-022-07959-6

    Article  Google Scholar 

  8. Li, W.T., Li, B.: Soliton solutions of weakly bound states for higher-order Ito equation. Nonlinear Dyn. 110, 741–751 (2022). https://doi.org/10.1007/s11071-022-07662-6

    Article  Google Scholar 

  9. Jiang, L., Li, X., Li, B.: Resonant collisions among diverse solitary waves of the \((2+1)\)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Phys Scripta 97, 115201 (2022). https://doi.org/10.1088/1402-4896/ac94a9

    Article  Google Scholar 

  10. Ahmad, S., Saifullah, S., Khan, A., Inc, M.: New local and nonlocal soliton solutions of a nonlocal reverse space-time mKdV equation using improved Hirota bilinear method. Phys. Lett. A 450, 128393 (2022). https://doi.org/10.1016/j.physleta.2022.128393

    Article  MathSciNet  Google Scholar 

  11. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015). https://doi.org/10.1016/j.physleta.2015.06.061

    Article  MathSciNet  Google Scholar 

  12. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018). https://doi.org/10.1016/j.jde.2017.10.033

    Article  MathSciNet  Google Scholar 

  13. Cao, Y.L., Cheng, Y., Malomed, B.A., He, J.S.: Rogue waves and lumps on the nonzero background in the \({\cal{PT} }\) symmetric nonlocal Maccari system. Stud. Appl. Math. 147, 694–723 (2021). https://doi.org/10.1111/sapm.12396

    Article  MathSciNet  Google Scholar 

  14. Zhang, Z., Li, B., Chen, J.C., Guo, Q., Stepanyants, Y.: Degenerate lump interactions within the Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 112, 106555 (2022). https://doi.org/10.1016/j.cnsns.2022.106555

    Article  MathSciNet  Google Scholar 

  15. Zhang, Z., Li, B., Chen, J.C., Guo, Q., Stepanyants, Y.: Peculiarities of resonant interactions of lump chains within the KP1 equation. Phys. Scripta 97, 115205 (2022). https://doi.org/10.1088/1402-4896/ac99aa

    Article  Google Scholar 

  16. Zhang, Z., Yang, X.Y., Li, B., Guo, Q.: Multi-lump formations from lump chains and plane solitons in the KP1 equation. Nonlinear Dyn. 111, 1625–1642 (2023). https://doi.org/10.1007/s11071-022-07903-8

    Article  Google Scholar 

  17. Yang, X.Y., Zhang, Z., Wang, Z.: Degenerate lump wave solutions of the Mel’nikov equation. Nonlinear Dyn. 111, 1553–1563 (2023). https://doi.org/10.1007/s11071-022-07874-w

    Article  Google Scholar 

  18. Sun, Y.J., Li, B.: Creation of anomalously interacting lumps by degeneration of lump chains in the BKP equation. Nonlinear Dyn. 111, 19297–19313 (2023). https://doi.org/10.1007/s11071-023-08857-1

    Article  Google Scholar 

  19. Wu, J.J., Sun, Y.J., Li, B.: Degenerate lump chain solutions of (4+1)-dimensional Fokas equation. Result Phys. 45, 106243 (2023). https://doi.org/10.1016/j.rinp.2023.106243

    Article  Google Scholar 

  20. Wang, L.H., He, J.S., Xu, H., Wang, J., Porsezian, K.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017). https://doi.org/10.1103/PhysRevE.95.042217

    Article  MathSciNet  Google Scholar 

  21. Li Sitai, Biondini G.: Soliton interactions and degenerate soliton complexes for the focusing nonlinear Schrödinger equation with nonzero background. Eur. Phys. J. Plus 133, 400 (2018). https://doi.org/10.1140/epjp/i2018-12263-y

    Article  Google Scholar 

  22. Gekash, A.A., Zakharov, V.E.: Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability. Nonlinearity 27, R1 (2014). https://doi.org/10.1088/0951-7715/27/4/R1

    Article  MathSciNet  Google Scholar 

  23. Ma, H.C., Mao, X., Deng, A.P.: Degenerate lump chain solutions and rouge wave solutions of the (4+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 111, 19329–19346 (2023). https://doi.org/10.1007/s11071-023-08837-5

    Article  Google Scholar 

  24. Zhang, Y., Liu, Y.P., Tang, X.Y.: M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dyn. 93, 2533–2541 (2018). https://doi.org/10.1007/s11071-018-4340-9

    Article  Google Scholar 

  25. Chen, S.J., Lü, X., Li, M.G., Wang, F.: Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations. Phys. Scr. 96, 095201 (2021). https://doi.org/10.1088/1402-4896/abf307

    Article  Google Scholar 

  26. Han, D.F., Li, X.Y., Zhao, Q.L., Li, C.Z.: Interaction structures of multi localized waves within the Kadomtsev–Petviashvili I equation. Physica D 426, 133671 (2023). https://doi.org/10.1016/j.physd.2023.133671

    Article  MathSciNet  Google Scholar 

  27. Zhang, Z., Guo, Q., Stepanyants, Y.: Creation of weakly interacting lumps by degeneration of lump chains in the KP1 equation. Chaos Solitons Fractals 170, 113398 (2023). https://doi.org/10.1016/j.physd.2023.133671

    Article  MathSciNet  Google Scholar 

  28. Cisneros-Ake, L.A.: Rational wave formation in the energy transfer problem. Phys. Lett. A 490, 129173 (2023). https://doi.org/10.1016/j.physleta.2023.129173

    Article  MathSciNet  Google Scholar 

  29. Clarkson, P.A., Dowie, E.: Rational solutions of the Boussinesq equation and applications to rogue waves. Trans. Math. Appl. 1, 1–26 (2017). https://doi.org/10.1093/imatrm/tnx003

  30. Xu, M.J., Tian, S.F., Tu, J.M., Ma, P.L., Zhang, T.T.: On quasiperiodic wave solutions and integrability to a generalized (2+1)-dimensional Korteweg–de Vries equation. Nonlinear Dyn. 82, 2031–2049 (2015). https://doi.org/10.1007/s11071-015-2297-5

    Article  MathSciNet  Google Scholar 

  31. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991). https://doi.org/10.1017/CBO9780511623998

    Book  Google Scholar 

  32. Tian, S.F., Ma, P.L.: On the Quasi-periodic wave solutions and asymptotic analysis to a (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Commun. Theor. Phys. 62, 245–258 (2014). https://doi.org/10.1088/0253-6102/62/2/12

    Article  MathSciNet  Google Scholar 

  33. Ma, P.L., Tian, S.F.: Quasi-periodic solutions and asymptotic properties for the isospectral BKP equation. Commun. Theor. Phys. 62, 17–25 (2014). https://doi.org/10.1088/0253-6102/62/1/04

    Article  MathSciNet  Google Scholar 

  34. Wang, H., Tian, S.F., Zhang, T.T., Chen, Y.: The breather wave solutions, M-lump solutions and semi-rational solutions to a (2+1)-dimensional generalized Korteweg–de Vries equation. J. Appl. Anal. Comput. 10, 118–130 (2020). https://doi.org/10.11948/20190011

    Article  MathSciNet  Google Scholar 

  35. Yang, B., Yang, J.K.: Pattern transformation in higher-order lumps of the Kadomtsev–Petviashvili I equation. J. Nonlinear Sci. 32, 52 (2022). https://doi.org/10.1007/s00332-022-09807-8

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China under Grant Nos. 12301588, 12175111, 12235007, and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

WL: Conceptualization, methodology, software, investigation, formal analysis, writing—original draft. CL: Funding acquisition, investigation, supervision. BL: Conceptualization, funding acquisition, resources, supervision.

Corresponding author

Correspondence to Chongxia Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The functions \(h_{j}\) and \(h_{jk} \left( j,k=1,2,3\right) \) in Eq. (29) are expressed in the following form:

$$\begin{aligned} h_{1}= & {} -2\left( \varepsilon ^{2}\left( \frac{\textrm{d}}{\textrm{d} \varepsilon }\xi _{1}\right) ^{2} +\varepsilon ^{2}\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}} \xi _{1}+\varepsilon \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1} +\frac{1}{2}\right) , \end{aligned}$$
(A1)
$$\begin{aligned} h_{2}= & {} -2\left( \varepsilon ^{2}\left( \frac{\textrm{d}}{\textrm{d} \varepsilon }\xi _{1}\right) ^{2}-\varepsilon ^{2}\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1} -\varepsilon \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1} +\frac{1}{2}\right) , \end{aligned}$$
(A2)
$$\begin{aligned} h_{3}= & {} 1, \end{aligned}$$
(A3)
$$\begin{aligned} h_{11}= & {} \frac{-486\varepsilon ^{10}-1377\varepsilon ^{8}-1026\varepsilon ^{6}-306\varepsilon ^{4}-12\varepsilon ^{2}-1}{(3\varepsilon ^{2}-1)^{5}}\nonumber \\{} & {} +\frac{2\varepsilon \left( 81\varepsilon ^{8}+135\varepsilon ^{6}+108\varepsilon ^{4}+15\varepsilon ^{2}+1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{4}}\nonumber \\{} & {} \times \left[ \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}+\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right] \nonumber \\{} & {} +\frac{2\varepsilon ^2\left( 27\varepsilon ^6-36\varepsilon ^4-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^3} \left[ \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _1\right) ^2+\frac{\textrm{d}^2}{\textrm{d}\varepsilon ^2}\xi _1\right. \nonumber \\{} & {} \left. +\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _1^*\right) ^2+\frac{\textrm{d}^2}{\textrm{d}\varepsilon ^2}\xi _1^*\right] \nonumber \\{} & {} -\frac{4\varepsilon ^2\left( 54\epsilon ^6-9\varepsilon ^4+18\varepsilon ^2+1\right) }{\left( 3\varepsilon ^{2}-1\right) ^3} \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right) \nonumber \\{} & {} +\frac{4\varepsilon ^{3}\left( 3\varepsilon ^{2}+1\right) }{(3\varepsilon ^{2}-1)^{2}}\left[ \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}+\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}\right. \nonumber \\{} & {} \left. +\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}+\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right] \nonumber \\{} & {} -\frac{4\varepsilon ^{4}}{3\varepsilon ^{2}-1}\left[ \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1} \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}+\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1} \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right) ^{2}\right. \nonumber \\{} & {} \left. +\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2} \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}+\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2} \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right) ^{2}\right] , \end{aligned}$$
(A4)
$$\begin{aligned} h_{12}= & {} \frac{729\varepsilon ^{10}+972\varepsilon ^{8}+1377\varepsilon ^{6}+18\varepsilon ^{4}+15\varepsilon ^{2}-1}{\left( 3\varepsilon ^{2}-1\right) ^{5}}\nonumber \\{} & {} -\frac{2\varepsilon \left( 243\varepsilon ^{6}+54\varepsilon ^{4}+12\varepsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{4}}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\nonumber \\{} & {} +\frac{2\varepsilon ^{2}\left( 9\varepsilon ^{4}+9\varepsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{3}} \left[ \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}+\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2}\right] \nonumber \\{} & {} -\frac{2\varepsilon \left( 891\varepsilon ^{6}+99\epsilon ^{4}+15\varepsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{5}} \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\nonumber \\{} & {} +\frac{2\varepsilon ^2\left( 54\varepsilon ^6-99\varepsilon ^4-6\varepsilon ^2-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^4} \left[ \frac{\textrm{d}^2}{\textrm{d}\varepsilon ^2}\xi _1^*\right. \nonumber \\{} & {} \left. -\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _1^*\right) ^2\right] \nonumber \\{} & {} +\frac{4\varepsilon ^{2}\left( 54\varepsilon ^{6}+63\varepsilon ^{4}+12\varepsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{4}} \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\nonumber \\{} & {} -\frac{4\varepsilon ^{3}\left( 9\varepsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{3}}\left[ \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}+\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2}\right] \nonumber \\{} & {} +\frac{4\varepsilon ^{3}\left( 9\varepsilon ^{2}+1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{3}} \left[ \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1} -\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right) ^{2}\right] \nonumber \\{} & {} +\frac{4\varepsilon ^{4}}{(3\varepsilon ^{2}-1)^{2}}\left[ \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}\left( \frac{\textrm{d}}{\textrm{d}\epsilon }\xi _{1}^{*}\right) ^{2}\right. \nonumber \\{} & {} \left. +\left( \frac{\textrm{d}}{\textrm{d}\epsilon }\xi _{1}^{*}\right) ^{2}\left( \frac{\textrm{d}}{\textrm{d}\epsilon }\xi _{1}\right) ^{2} -\frac{\textrm{d}^{2}}{\textrm{d}\epsilon ^{2}}\xi _{1}\frac{\textrm{d}^{2}}{\textrm{d}\epsilon ^{2}}\xi _{1}^{*}\right. \nonumber \\{} & {} \left. -\left( \frac{\textrm{d}}{\textrm{d}\epsilon }\xi _{1}\right) ^{2}\frac{\textrm{d}^{2}}{\textrm{d}\epsilon ^{2}}\xi _{1}^{*}\right] , \end{aligned}$$
(A5)
$$\begin{aligned} h_{13}= & {} \frac{-81\varepsilon ^{6}+198\varepsilon ^{4}+12\varepsilon ^{2}+1}{\left( 3\varepsilon ^{2}-1\right) ^{5}}\nonumber \\{} & {} -\frac{2\varepsilon \left( 15\varepsilon ^{2}+1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{4}} \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}+\frac{2\varepsilon ^{2}}{\left( 3\varepsilon ^{2}-1\right) ^{3}}\nonumber \\{} & {} \times \left[ \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2}+\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}\right] , \end{aligned}$$
(A6)
$$\begin{aligned} h_{22}= & {} \frac{2187\varepsilon ^{12}+20898\varepsilon ^{10}-5670\varepsilon ^{8}+216\varepsilon ^{6}+252\varepsilon ^{4} -24\varepsilon ^{2}+1}{\left( 3\varepsilon ^{2}-1\right) ^{8}}\nonumber \\{} & {} -\frac{2\varepsilon \left( 1620\varepsilon ^{8}+513\varepsilon ^{6}-189\varepsilon ^{4}+21\varepsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{7}}\nonumber \\{} & {} \left[ \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}+\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right] \nonumber \\{} & {} +\frac{2\varepsilon ^{2}\left( 54\varepsilon ^{6}+63\varepsilon ^{4}-18\varepsilon ^{2}+1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{6}} \left[ \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2}\right. \nonumber \\{} & {} \left. -\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}+\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right) ^{2} -\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}\right] \nonumber \\{} & {} +\frac{4\varepsilon ^{2}\left( 54\varepsilon ^{6}+207\varepsilon ^{4}-18\varepsilon ^{2}+1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{6}} \frac{\textrm{d}}{\textrm{d}\epsilon }\xi _{1}^{*}\frac{\textrm{d}}{\textrm{d}\epsilon }\xi _{1}\nonumber \\{} & {} +\frac{4\varepsilon ^{3}\left( 15\varepsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{5}} \left[ \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1} +\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right. \nonumber \\{} & {} \left. -\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _1\right) ^2\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _1^{*} -\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _1\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _1^*\right) ^2\right] \nonumber \\{} & {} +\frac{4\varepsilon ^{4}}{\left( 3\varepsilon ^{2}-1\right) ^{4}}\left[ \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1} \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}-\frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1} \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right) ^{2}\right. \nonumber \\{} & {} \left. -\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2} \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}^{*}+\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}^{*}\right) ^{2} \left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2}\right] , \end{aligned}$$
(A7)
$$\begin{aligned} h_{23}= & {} \frac{-81\varepsilon ^{6}-144\varepsilon ^{4}+24\varepsilon ^{2}-1}{\left( 3\varepsilon ^{2}-1\right) ^{8}}\nonumber \\{} & {} +\frac{2\varepsilon \left( 21\epsilon ^{2}-1\right) }{\left( 3\varepsilon ^{2}-1\right) ^{7}}\frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1} +\frac{2\varepsilon ^{2}}{\left( 3\varepsilon ^{2}-1\right) ^{6}}\nonumber \\{} & {} \left[ \frac{\textrm{d}^{2}}{\textrm{d}\varepsilon ^{2}}\xi _{1}-\left( \frac{\textrm{d}}{\textrm{d}\varepsilon }\xi _{1}\right) ^{2}\right] , \end{aligned}$$
(A8)
$$\begin{aligned} h_{33}= & {} -\frac{1}{\left( 3\varepsilon ^{2}-1\right) ^9}. \end{aligned}$$
(A9)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lu, C. & Li, B. Derivation of anomalously interacting lumps for the (2+1)-dimensional generalized Korteweg–de Vries equation via degeneracy of lump chains. Nonlinear Dyn 112, 7359–7375 (2024). https://doi.org/10.1007/s11071-024-09395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09395-0

Keywords

Navigation