Skip to main content
Log in

Degenerate lump chain solutions and rouge wave solutions of the (4 + 1)-dimensional nonlinear evolution equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, we take the (4 + 1)-dimensional nonlinear evolution equation as an example and construct the degenerate solutions of the lump chains and the rogue wave solutions, respectively. In the process of degradation, we can observe the coupling phenomenon between lump chains. In the event of complete solution degradation, the period tends to infinity, resulting in the centralization of multi-lump solutions. Then, we apply the long-wave limit approach and perturb phase to derive the rogue wave solutions from the N-soliton solution. Also, we obtain images of the rogue wave solutions. We find that higher-order rogue wave solutions generate multiple stable structures. And in the limit, the rogue wave solutions have a similar structure to the central region of the degenerate solutions, i.e., multi-lump structures. This finding links the three types of solutions and provides a simple way to find multi-lump solutions. In addition, the dynamical behaviors of these solutions help solve issues in the fluctuation theory, marine science, and other related domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ma, H.C., Bai, Y.X., Deng, A.P.: Multiple lump solutions of the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation. Math. Methods Appl. Sci. 43(12), 7135–7142 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Ma, H.C., Deng, A.P.: Lump solution of (2 + 1)-dimensional Boussinesq equation. Commun. Theor. Phys. 65(5), 546 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Foroutan, M., Manafian, J., Ranjbaran, A.: Lump solution and its interaction to (3 + 1)-D potential-YTSF equation. Nonlinear Dyn. 92, 2077–2092 (2018)

    Google Scholar 

  4. Ma, H.C., Mao, X., Deng, A.P.: Interaction solutions for the (2 + 1)-dimensional extended Boiti–Leon–Manna–Pempinelli equation in incompressible fluid. Commun. Theor. Phys. 75, 085001 (2023)

    MathSciNet  MATH  Google Scholar 

  5. Tan, W., Dai, Z.D., Yin, Z.Y.: Dynamics of multi-breathers, N-solitons and M-lump solutions in the (2 + 1)-dimensional KdV equation. Nonlinear Dyn. 96, 1605–1614 (2019)

    MATH  Google Scholar 

  6. Ismael, H.F., Bulut, H., Park, C., Osman, M.S.: M-lump, N-soliton solutions, and the collision phenomena for the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Results Phys. 19, 103329 (2020)

    Google Scholar 

  7. Ma, H.C., Yue, S.P., Deng, A.P.: Nonlinear superposition between lump and other waves of the (2 + 1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid dynamics. Nonlinear Dyn. 109(3), 1969–1983 (2022)

    Google Scholar 

  8. An, H.L., Feng, D.L., Zhu, H.X.: General M-lump, high-order breather and localized interaction solutions to the (2 + 1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 98(2), 1275–1286 (2019)

    Google Scholar 

  9. Ma, H.C., Mao, X., Deng, A.P.: Resonance solutions and hybrid solutions of an extended (2 + 1)-dimensional Kadomtsev–Petviashvili equation in fluid mechanics. Nonlinear Dyn. 111, 13439–13455 (2023)

    Google Scholar 

  10. Zhang, Z., Guo, Q., Stepanyants, Y.: Creation of weakly interacting lumps by degeneration of lump chains in the KP1 equation. Chaos Solitons Fractals 170, 113398 (2023)

    MathSciNet  Google Scholar 

  11. Zhang, Z., Li, B., Chen, J.C., Guo, Q., Stepanyants, Y.: Peculiarities of resonant interactions of lump chains within the KP1 equation. Phys. Scr. 97(11), 115205 (2022)

    Google Scholar 

  12. Zhang, Z., Yang, X.Y., Li, B., Guo, Q., Stepanyants, Y.: Multi-lump formations from lump chains and plane solitons in the KP1 equation. Nonlinear Dyn. 111(2), 1625–1642 (2023)

    Google Scholar 

  13. Yang, X.Y., Wang, Z., Zhang, Z.: Generation of anomalously scattered lumps via lump chains degeneration within the Mel’ nikov equation. Nonlinear Dyn. 111, 15293–15307 (2023)

    Google Scholar 

  14. Yang, X.Y., Zhang, Z., Wang, Z.: Degenerate lump wave solutions of the Mel’nikov equation. Nonlinear Dyn. 111(2), 1553–1563 (2023)

    Google Scholar 

  15. Zhao, Z.L., He, L.C., Wazwaz, A.M.: Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves. Chin. Phys. B 32(4), 040501 (2023)

    Google Scholar 

  16. He, L.C., Zhang, J.W., Zhao, Z.L.: Lump and interaction dynamics of the (2 + 1)-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili equation. Chin. J. Phys. 79, 225–245 (2022)

    MathSciNet  Google Scholar 

  17. Wu, J.J., Sun, Y.J., Li, B.: Degenerate lump chain solutions of (4 + 1)-dimensional Fokas equation. Results Phys. 45, 106243 (2023)

    Google Scholar 

  18. Dysthe, K., Krogstad, H., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  20. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Google Scholar 

  21. Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N., Dudley, J.M.: The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6(10), 790–795 (2010)

    Google Scholar 

  22. Pisarchik, A.N., Jaimes-Reátegui, R., Sevilla-Escoboza, R., Huerta-Cuellar, G., Taki, M.: Rogue waves in a multistable system. Phys. Rev. Lett. 107(27), 274101 (2011)

    Google Scholar 

  23. Wang, L., Li, S., Qi, F.H.: Breather-to-soliton and rogue wave-to-soliton transitions in a resonant erbium-doped fiber system with higher-order effects. Nonlinear Dyn. 85, 389–398 (2016)

    MathSciNet  Google Scholar 

  24. Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., McClintock, P.V.: Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101(6), 065303 (2008)

    Google Scholar 

  25. Efimov, V.B., Ganshin, A.N., Kolmakov, G.V., McClintock, P.V., Mezhov-Deglin, L.P.: Rogue waves in superfluid helium. Eur. Phys. J. Spec. Top. 185, 181–193 (2010)

    MATH  Google Scholar 

  26. Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. Europhys. Lett. 96(2), 25002 (2011)

    Google Scholar 

  27. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov–Ivanov equation for the Alfvén waves in an astrophysical plasma. Chaos, Solitons Fractals 120, 259–265 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2 + 1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Google Scholar 

  31. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96(2), 025224 (2020)

    Google Scholar 

  32. Feng, L.L., Zhang, T.T.: Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl. Math. Lett. 78, 133–140 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201–208 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Li, B.Q., Ma, Y.L.: Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Xu, Z.H., Chen, H.L., Dai, Z.D.: Rogue wave for the (2 + 1)-dimensional Kadomtsev–Petviashvili equation. Appl. Math. Lett. 37, 34–38 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Wang, X.B., Tian, S.F., Qin, C.Y., Zhang, T.T.: Dynamics of the breathers, rogue waves and solitary waves in the (2 + 1)-dimensional Ito equation. Appl. Math. Lett. 68, 40–47 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Zou, L., Yu, Z.B., Wang, X.B.: Dynamics of the breather waves, rogue waves and solitary waves in an extend Kadomtsev–Petviashvili equation. Appl. Math. Lett. 83, 73–79 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Liu, F.Y., Gao, Y.T., Yu, X.: Rogue-wave, rational and semi-rational solutions for a generalized (3 + 1)-dimensional Yu–Toda–Sasa–Fukuyama equation in a two-layer fluid. Nonlinear Dyn. 111(4), 3713–3723 (2023)

    Google Scholar 

  39. Wu, X.Y., Tian, B., Yin, H.M., Du, Z.: Rogue-wave solutions for a discrete Ablowitz–Ladik equation with variable coefficients for an electrical lattice. Nonlinear Dyn. 93, 1635–1645 (2018)

    MATH  Google Scholar 

  40. Sun, Y., Tian, B., Liu, L., Wu, X.Y.: Rogue waves for a generalized nonlinear Schrödinger equation with distributed coefficients in a monomode optical fiber. Chaos, Solitons Fractals 107, 266–274 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Li, W.T., Xu, X.L.: The generation mechanism of rouge wave for (3 + 1)-dimensional Kudryashov–Sinelshchikov equation. Eur. Phys. J. Plus 138(3), 207 (2023)

    Google Scholar 

  42. Yang, X.Y., Zhang, Z., Wazwaz, A.M., Wang, Z.: A direct method for generating rogue wave solutions to the (3 + 1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation. Phys. Lett. A 449, 128355 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Google Scholar 

  44. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  45. Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Phys. Lett. A 375(10), 1275–1280 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, R.F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34(1), 122–139 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Fokas, A.S.: Integrable nonlinear evolution partial differential equations in 4 + 2 and 3 + 1 dimensions. Phys. Rev. Lett. 96(19), 190201 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Yang, Z.Z., Yan, Z.Y.: Symmetry groups and exact solutions of new (4 + 1)-dimensional Fokas equation. Commun. Theor. Phys. 51(5), 876 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Ma, H.C., Bai, Y.X., Deng, A.P.: Multiple lump solutions of the (4 + 1)-dimensional Fokas equation. Adv. Math. Phys. 2020, 3407676 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Wazwaz, A.M.: A variety of multiple-soliton solutions for the integrable (4 + 1)-dimensional Fokas equation. Waves Random Complex Media 31(1), 46–56 (2021)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, S., Tian, C., Qian, W.Y.: Bilinearization and new multisoliton solutions for the (4 + 1)-dimensional Fokas equation. Pramana 86, 1259–1267 (2016)

    Google Scholar 

  52. Mohammed, W.W., Cesarano, C.: The soliton solutions for the (4 + 1)-dimensional stochastic Fokas equation. Math. Methods Appl. Sci. 46(6), 7589–7597 (2023)

    MathSciNet  Google Scholar 

  53. Wang, X.B., Tian, S.F., Feng, L.L., Zhang, T.T.: On quasi-periodic waves and rogue waves to the (4 + 1)-dimensional nonlinear Fokas equation. J. Math. Phys. 59(7), 073505 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Al-Amr, M.O., El-Ganaini, S.: New exact traveling wave solutions of the (4 + 1)-dimensional Fokas equation. Comput. Math. Appl. 74(6), 1274–1287 (2017)

    MathSciNet  MATH  Google Scholar 

  55. Tian, H., Niu, Y.J., Ghanbari, B., Zhang, Z., Cao, Y.L.: Integrability and high-order localized waves of the (4 + 1)-dimensional nonlinear evolution equation. Chaos, Solitons Fractals 162, 112406 (2022)

    MathSciNet  MATH  Google Scholar 

  56. Wazwaz, A.M.: New (3 + 1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106(1), 891–897 (2021)

    Google Scholar 

  57. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3 + 1)-and (2 + 1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. 111(4), 3623–3632 (2023)

    Google Scholar 

  58. Yang, B., Yang, Jk.: Rogue wave patterns in the nonlinear Schrödinger equation. Phys. D 419, 132850 (2021)

    MATH  Google Scholar 

  59. Kumar, K.T., Kalyan, S., Kandagal, M., Tawade, J.V., Khan, U., Eldin, S.M., Chohan, J.S., Elattar, S., Abed, A.M.: Influence of heat generation/absorption on mixed convection flow field with porous matrix in a vertical channel. Case Stud. Therm. Eng. 47, 103049 (2023)

    Google Scholar 

  60. Saraswathi, H., Kalyan, S., Chamkha, A.J.: Steady of thermal and concentration effect on a fully developed Jeffrey fluid with baffle in a vertical passage. J. Nanofluids 12(2), 341–347 (2023)

    Google Scholar 

  61. Kalyan, S., Sharan, A., Chamkha, A.J.: Heat and mass transfer of two immiscible flows of Jeffrey fluid in a vertical channel. Heat Transf. 52(1), 267–288 (2023)

    Google Scholar 

  62. Mangala, K., Shreedevi, K.: Magneto-hydrodynamic effect on mixed convection in a vertical channel presence of internal heat generation/absorption. Eur. Chem. Bull. 12(4), 5030–5043 (2023)

    Google Scholar 

  63. Alinejad, J., Esfahani, J.A.: Taguchi design of three dimensional simulations for optimization of turbulent mixed convection in a cavity. Meccanica 52(4), 925–938 (2017)

    MathSciNet  MATH  Google Scholar 

  64. Alinejad, J., Esfahani, J.A.: Lattice Boltzmann simulation of forced convection over an electronic board with multiple obstacles. Heat Transf. Res. 45(3), 241–262 (2014)

    Google Scholar 

  65. Alinejad, J., Esfahani, J.A.: Numerical stabilization of three-dimensional turbulent natural convection around isothermal cylinder. J. Thermophys. Heat Transf. 30(1), 94–102 (2016)

    Google Scholar 

  66. Peiravi, M.M., Alinejad, J.: 3D numerical simulation of fibers arrangement effects on thermal conductivity of polymer matrix composite. Mech. Adv. Mater. Struct. 9(1), 59–73 (2022)

  67. Araban, H.P., Alinejad, J., Peiravi, M.M.: Entropy generation and hybrid fluid-solid-fluid heat transfer in 3D multi-floors enclosure. Int. J. Exergy 37(3), 337–357 (2022)

  68. Alinejad, J.: Lattice Boltzmann simulation of a fluid flow around a triangular unit of three isothermal cylinders. J. Appl. Mech. Tech. Phys. 57(1), 117–126 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcai Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

The authors declare that they have adhered to the ethical standards of research execution.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Mao, X. & Deng, A. Degenerate lump chain solutions and rouge wave solutions of the (4 + 1)-dimensional nonlinear evolution equation. Nonlinear Dyn 111, 19329–19346 (2023). https://doi.org/10.1007/s11071-023-08837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08837-5

Keywords

Navigation