Skip to main content
Log in

Dynamic characteristic of rudder loop with rough revolute joint clearance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The joint clearance of rudder loop has a significant impact in achieving the high-precision attitude control of aircraft. This study proposed a novel revolute joint clearance contact model considering surface topography. Such a model identified that the impact dynamic characteristics were significantly influenced by parameters such as contact speed, roughness, and curvature radius of asperities. The dynamic model of the rudder loop was based on the Lagrange equation and the contact model of revolute joint clearance. The results indicated that rudder angle error, contact force, and impact frequency nonlinearly increased along with the increase of motor speed. The increment of joint clearance caused increased rudder angle error and contact force, but a decreased impact frequency. An increase in contact surface roughness decreased the contact force and exerted insignificant effects on rudder angle and impact frequency. To verify the dynamic model, a dynamic characteristic test rig of rudder loop was established. This study can improve the dynamic analysis accuracy of the rudder loop with clearance and provide a solid theoretical basis for solving the high-precision control of the discontinuous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61, 633–653 (2010). https://doi.org/10.1007/s11071-010-9676-8

    Article  Google Scholar 

  2. Gummer, A., Sauer, B.: Modeling planar slider-crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31, 127–145 (2014). https://doi.org/10.1007/s11044-012-9339-2

    Article  Google Scholar 

  3. Tsai, M.J., Lai, T.H.: Accuracy analysis of a multi-loop linkage with joint clearances. Mech. Mach. Theory 43, 1141–1157 (2008). https://doi.org/10.1016/j.mechmachtheory.2007.09.001

    Article  Google Scholar 

  4. Erkaya, S., Uzmay, I.: Optimization of transmission angle for slider-crank mechanism with joint clearances. Struct. Multidiscip. Optim. 37, 493–508 (2009). https://doi.org/10.1007/s00158-008-0243-6

    Article  Google Scholar 

  5. Mach, M.: Dynamic response of a revolute joint with clearance. Mech. Mach. Theory. 3, 121–134 (1996)

    Google Scholar 

  6. Gonthier, Y., McPhee, J., Lange, C., Piedbœuf, J.C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11, 209–233 (2004). https://doi.org/10.1023/B:MUBO.0000029392.21648.bc

    Article  Google Scholar 

  7. Erkaya, S.: Clearance-induced vibration responses of mechanical systems: computational and experimental investigations. J. Brazilian Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1015-x

    Article  Google Scholar 

  8. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994). https://doi.org/10.1007/BF00045676

    Article  Google Scholar 

  9. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44, 1211–1222 (2009). https://doi.org/10.1016/j.mechmachtheory.2008.08.003

    Article  Google Scholar 

  10. Yuan, H., Wang, H., Li, S., Dai, J.S.: Revelation of metamorphic phenomenon through the equivalent mechanisms and development of the novel metamorphic epicyclic gear trains. Mech. Mach. Theory 166, 104433 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104433

    Article  Google Scholar 

  11. Wang, R., Sun, J., Dai, J.S.: Design analysis and type synthesis of a petal-inspired space deployable-foldable mechanism. Mech. Mach. Theory 141, 151–170 (2019). https://doi.org/10.1016/j.mechmachtheory.2019.07.005

    Article  Google Scholar 

  12. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.12.002

    Article  Google Scholar 

  13. Marques, F., Isaac, F., Dourado, N., Flores, P.: An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mech. Mach. Theory 116, 123–144 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.05.020

    Article  Google Scholar 

  14. Cavalieri, F.J., Cardona, A.: Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mech. Mach. Theory 121, 335–354 (2018). https://doi.org/10.1016/j.mechmachtheory.2017.09.018

    Article  Google Scholar 

  15. Koshy, C.S., Flores, P., Lankarani, H.M.: Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: Computational and experimental approaches. Nonlinear Dyn. 73, 325–338 (2013). https://doi.org/10.1007/s11071-013-0787-x

    Article  Google Scholar 

  16. Li, Y., Wang, C., Huang, W.: Dynamics analysis of planar rigid-flexible coupling deployable solar array system with multiple revolute clearance joints. Mech. Syst. Signal Process. 117, 188–209 (2019). https://doi.org/10.1016/j.ymssp.2018.07.037

    Article  ADS  Google Scholar 

  17. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar rigid-body mechanical systems with two-clearance revolute joints. Nonlinear Dyn. 73, 259–273 (2013). https://doi.org/10.1007/s11071-013-0782-2

    Article  MathSciNet  Google Scholar 

  18. Erkaya, S., Uzmay, I.: Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism. Multibody Syst. Dyn. 24, 81–102 (2010). https://doi.org/10.1007/s11044-010-9192-0

    Article  Google Scholar 

  19. Skrinjar, L., Slavič, J., Boltežar, M.: A validated model for a pin-slot clearance joint. Nonlinear Dyn. 88, 131–143 (2017). https://doi.org/10.1007/s11071-016-3234-y

    Article  Google Scholar 

  20. Khemili, I., Romdhane, L.: Dynamic analysis of a flexible slider-crank mechanism with clearance. Eur. J. Mech. A/Solids. 27, 882–898 (2008). https://doi.org/10.1016/j.euromechsol.2007.12.004

    Article  ADS  Google Scholar 

  21. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 295, 300–319 (1966). https://doi.org/10.1098/rspa.1966.0242

    Article  ADS  CAS  Google Scholar 

  22. Kogut, L., Etsion, I.: A finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans. 46, 383–390 (2003). https://doi.org/10.1080/10402000308982641

    Article  CAS  Google Scholar 

  23. Andersson, S., Söderberg, A., Olofsson, U.: A random wear model for the interaction between a rough and a smooth surface. Wear 264, 763–769 (2008). https://doi.org/10.1016/j.wear.2006.12.075

    Article  CAS  Google Scholar 

  24. Stickel, D., Wimmer, M.A., Fischer, A.: Analyzing pin-on-ball wear tests by means of the Greenwood–Williamson contact model. Wear 301, 4–10 (2013). https://doi.org/10.1016/j.wear.2012.12.056

    Article  CAS  Google Scholar 

  25. Kadin, Y., Kligerman, Y., Etsion, I.: Unloading an elastic-plastic contact of rough surfaces. J. Mech. Phys. Solids 54, 2652–2674 (2006). https://doi.org/10.1016/j.jmps.2006.04.013

    Article  ADS  CAS  Google Scholar 

  26. Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 39, 906–914 (2006). https://doi.org/10.1016/j.triboint.2005.09.001

    Article  CAS  Google Scholar 

  27. Jin, F., Zhang, W., Wan, Q., Guo, X.: Adhesive contact of a power-law graded elastic half-space with a randomly rough rigid surface. Int. J. Solids Struct. 81, 244–249 (2016). https://doi.org/10.1016/j.ijsolstr.2015.12.001

    Article  Google Scholar 

  28. Greenwood, J.A.: The contact of two nominally flat rough surfaces. Engineering 185, 625–633 (1970)

    Google Scholar 

  29. Ciavarella, M., Delfine, V., Demelio, G.: A “re-vitalized” Greenwood and Williamson model of elastic contact between fractal surfaces. J. Mech. Phys. Solids 54, 2569–2591 (2006). https://doi.org/10.1016/j.jmps.2006.05.006

    Article  ADS  CAS  Google Scholar 

  30. Whitehouse, D.J.: The properties of random surfaces of significance in their contact. Proc. R. Soc. London. A. Math. Phys. Sci. 316, 97–121 (1970). https://doi.org/10.1098/rspa.1970.0068

    Article  ADS  Google Scholar 

  31. Pullen, J., Williamson, J.B.P.: On the plastic contact of rough surfaces. Proc. R. Soc. London. A. Math. Phys. Sci. 327, 159–173 (1972). https://doi.org/10.1098/rspa.1972.0038

    Article  ADS  CAS  Google Scholar 

  32. Chang, W.R., Bogy, I., Etsion, I.: An elastic-plastic model for the contact of rough surfaces., 109, 257–263 (1986)

  33. Liu, Z., Neville, A., Reuben, R.L.: An analytical solution for elastic and elastic-plastic contact models. Tribol. Trans. 43, 627–634 (2000). https://doi.org/10.1080/10402000008982387

    Article  CAS  Google Scholar 

  34. Hunt, K.H., Crossley, F.R.E.: Coefficient of Restitution Interpreted As Damping in Vibroimpact. Am. Soc. Mech. Eng. 42, 440–445 (1975)

    Google Scholar 

  35. Flores, P., MacHado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011). https://doi.org/10.1007/s11044-010-9237-4

    Article  Google Scholar 

  36. Song, Z., Gao, D., Zhao, Y., Dai, J.S.: An improved bouc-wen model based on equitorque discretization for a load-dependent nonlinear stiffness actuator. IEEE Trans. Autom. Sci. Eng. 18, 840–849 (2021). https://doi.org/10.1109/TASE.2020.2993277

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (No. 52205110) and STU Scientific Research Foundation for Talents (grant numbers NTF20014). The authors would also like to thank Dr. Shitong Peng and Pro. Fengtao Wang for the language editing. The authors would like to thank the anonymous reviewers for their insightful comments and suggestions on an earlier draft of this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwei Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wang, Y., Zhang, X. et al. Dynamic characteristic of rudder loop with rough revolute joint clearance. Nonlinear Dyn 112, 3179–3194 (2024). https://doi.org/10.1007/s11071-023-09131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09131-0

Keywords

Navigation