Skip to main content
Log in

Bilinear Bäcklund, Lax pairs, breather waves, lump waves and soliton interaction of (2+1)-dimensional non-autonomous Kadomtsev–Petviashvili equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article describes the characteristic of integrability via Painlevé analysis of the Kadomtsev–Petviashvili (KP) equation under the influence of an external force along with a damping. Introducing the Hirota’s approach multi-soliton solution of the said equation is acquired in excited systems. Utilizing the obtained solutions, the interaction of solitary wave is observed with special care. It has been observed that interactive autonomous solitons appear to remain in their original shape after collision. However, the non-autonomous soliton changes its shape and directions after collision. The background from which the solitons rise also significantly changes due to the action of external forces. The lump-type wave and some complicated mixed soliton are derived from the bilinear form of the said equation with the appropriate choice of polynomial functions. In addition, the lump solution is obtained by the long wave limit method which is appeared physically the same as the previous one. On the basis of the obtained mixed soliton, the interaction of the strip soliton and lump wave is graphically described. During the investigation of the interaction, fusion-type situation appears. Finally, from the analytical results of the relevant motions, it is also confirmed that the velocity, maximum altitude, and interacting natures of the wave quantities are all influenced by the damping and forcing terms. The interacting natures of the wave quantities are entirely investigated also from numerical understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Code availability

Mathematica codes are available.

References

  1. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wei, G.M., Gao, Y.T., Hu, W., Zhang, C.Y.: Painlevé analysis, auto-Bäcklund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV) equation. Eur. Phys. J. B 53(3), 343–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu, Y., Gao, Y.T., Sun, Z.Y., Yu, X.: Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves. Nonlinear Dyn. 66(4), 575–587 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Wronskian solutions and integrability for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. Nonlinear Dyn. 67(2), 1023–1030 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yousaf Khattak, M., Masood, W., Jahangir, R., Siddiq, M.: Interaction of ion acoustic solitons for Zakharov Kuznetsov equation in relativistically degenerate quantum magnetoplasmas. In: Waves in Random and Complex Media, pp. 1–17 (2021)

  6. Khattak, M.Y., Masood, W., Jahangir, R., Siddiq, M., Alyousef, H.A., El-Tantawy, S.A.: Interaction of ion-acoustic solitons for multi-dimensional Zakharov Kuznetsov equation in Van Allen radiation belts. Chaos Solitons Fractals 161, 112265 (2022)

    Article  MathSciNet  Google Scholar 

  7. Li, M., Xiao, J.H., Wang, M., Wang, Y.F., Tian, B.: Solitons for a forced extended Korteweg-de Vries equation with variable coefficients in atmospheric dynamics. Z. Naturforsch A 68(3–4), 235–244 (2013)

    Article  Google Scholar 

  8. Li, L.L., Tian, B., Zhang, C.Y., Xu, T.: On a generalized Kadomtsev–Petviashvili equation with variable coefficients via symbolic computation. Physica Scrip. 76(5), 411 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liang, Y., Wei, G., Li, X.: Transformations and multi-solitonic solutions for a generalized variable-coefficient Kadomtsev–Petviashvili equation. Comput. Math. Appl. 61(11), 3268–3277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, W.X., Abdeljabbar, A.: A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation. Appl. Math. Lett. 25(10), 1500–1504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Welss, J.: The painlevé property for partial differential equations ii, bäcklund transformation, lax pairs, and Schwarzian derivative. J. Math. Phys. 24(6), 1405–1413 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guang-Mei, W., Yi-Tian, G., Tao, X., Xiang-Hua, M., Chun-Yi, Z.: Painlevé property and new analytic solutions for a variable-coefficient Kadomtsev–Petviashvili equation with symbolic computation. Chin. Phys. Lett. 25(5), 1599 (2008)

    Article  Google Scholar 

  14. Li, X.N., Wei, G.M., Liang, Y.Q.: Painlevé analysis and new analytic solutions for variable-coefficient Kadomtsev–Petviashvili equation with symbolic computation. Appl. Math. Comput. 216(12), 3568–3577 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Mondal, K.K., Roy, A., Chatterjee, P., Raut, S.: Propagation of ion-acoustic solitary waves for damped forced Kuznetsov equation in a realistic rotating magnetized electron–positron-ion plasma. Int. J. Appl. Comput. Math. 6, 55 (2020)

    Article  MATH  Google Scholar 

  16. Mondal, K.K., Roy, A., Chatterjee, P., Raut, S.: Propagation of ion-acoustic solitary waves for damped forced Zakharov Kuznetsov equation in a relativistic rotating magnetized electron-positron-ion plasma. Int. J. Appl. Comput. Math. 6(3), 1–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raut, S., Mondal, K.K., Chatterjee, P., Roy, A.: Propagation of dust-ion-acoustic solitary waves for damped modified Kadomtsev–Petviashvili–Burgers equation in dusty plasma with a q-nonextensive nonthermal electron velocity distribution. SEMA J. 78(4), 571–593 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Raut, S., Roy, A., Mondal, K.K., Chatterjee, P., Chadha, N.M.: Non-stationary solitary wave solution for damped forced Kadomtsev–Petviashvili equation in a magnetized dusty plasma with q-nonextensive velocity distributed electron. Int. J. Appl. Comput. Math. 7(6), 1–20 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. de Moura, R.P., Nascimento, A.C., Santos, G.N.: On the stabilization for the high-order Kadomtsev–Petviashvili and the Zakharov–Kuznetsov equations with localized damping. Evol. Equ. Control Theory 11(3), 711 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Raut, S., Roy, S., Kairi, R.R., Chatterjee, P.: Approximate analytical solutions of generalized Zakharov–Kuznetsov and generalized modified Zakharov–Kuznetsov equations. Int. J. Appl. Comput. Math. 7(4), 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roy, S., Raut, S., Kairi, R.R., Chatterjee, P.: Integrability and the multi-soliton interactions of non-autonomous Zakharov–Kuznetsov equation. Eur. Phys. J. Plus 137(5), 1–14 (2022)

    Article  Google Scholar 

  22. Sen, A., Tiwari, S., Mishra, S., Kaw, P.: Nonlinear wave excitations by orbiting charged space debris objects. Adv. Space Res. 56(3), 429 (2015)

    Article  Google Scholar 

  23. Aslanov, V.S., Yudintsev, V.V.: Dynamics, analytical solutions and choice of parameters for towed space debris with flexible appendages. Adv. Space Res. 55, 660–667 (2015)

    Article  Google Scholar 

  24. Manakov, S.V., Zakhorov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Article  Google Scholar 

  25. Lu, Z., Tian, E.M., Grimshaw, R.: Interaction of two lump solitons described by the Kadomtsev–Petviashvili I equation. Wave Motion 40, 123–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, J.Y., Ma, W.X.: Abundant interaction solutions to the KP equation. Nonlinear Dyn. 89, 1539–1544 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yong, X., Ma, W.X., Huang, Y., Liu, Y.: Lump solutions to the Kadomtsev–Petviashvili I equation with a self-consistent source. Comput. Math. Appl. 75(9), 3414–3419 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma, Z., Chen, J., Fei, J.: Lump and line soliton pairs to a (2 + 1)-dimensional integrable Kadomtsev–Petviashvili equation. Comput. Math. Appl. 76(5), 1130–1138 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, J.Y., Ma, W.X.: Lump solutions of the BKP equation by symbolic computation. Int. J. Modern Phys. B 30, 1640028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma, W.X., Qin, Z.Y., Lv, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma, Y.L., Li, B.Q.: Rogue wave solutions, soliton and rogue wave mixed solution for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluids. Modern Phys. Lett. B 32(29), 1850358 (2018)

    Article  MathSciNet  Google Scholar 

  35. Liu, J.G., Zhu, W.H.: Various exact analytical solutions of a variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 100(3), 2739–2751 (2020)

    Article  Google Scholar 

  36. Xu, H., Ma, Z., Fei, J., Zhu, Q.: Novel characteristics of lump and lump-soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 98(1), 551–560 (2019)

    Article  MATH  Google Scholar 

  37. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496–1503 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tan, W., Dai, Z.D., Yin, Z.Y.: Dynamics of multi-breathers, N-solitons and M-lump solutions in the (2+1)-dimensional KdV equation. Nonlinear Dyn. 96(2), 1605–1614 (2019)

    Article  MATH  Google Scholar 

  39. Zhang, Z., Yang, X., Li, W., Li, B.: Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. B 28(11), 110201 (2019)

    Article  Google Scholar 

  40. Zhang, Z., Guo, Q., Li, B., Chen, J.: A new class of nonlinear superposition between lump waves and other waves for Kadomtsev–Petviashvili I equation. Commun. Nonlinear Sci. Numer. Simul. 101, 105866 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Z., Li, B., Chen, J., Guo, Q., Stepanyants, Y.: Degenerate lump interactions within the Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 112, 106555 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Qian, C., Rao, J.G., Liu, Y.B., He, J.S.: Rogue waves in the three-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. Lett. 33(11), 110201 (2016)

    Article  Google Scholar 

  43. Liu, Y., Wen, X.Y., Wang, D.S.: Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation. Comput. Math. Appl. 78(1), 1–19 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  45. Scott, A.C.: The Nonlinear Universe: Chaos, Emergence, Life. Springer, Berlin (2007)

    Google Scholar 

  46. Tang, X.Y., Lou, S.Y., Zhang, Y.: Localized excitations in (2+1)-dimensional systems. Phys. Rev. E 66(4), 046601 (2002)

    Article  MathSciNet  Google Scholar 

  47. Tang, X.Y., Lou, S.Y.: Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems. J. Math. Phys. 44(9), 4000–4025 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lou, S.Y.: (2+1)-Dimensional Compacton solutions with and without completely elastic interaction properties. J. Phys. A Math. Gen. 35(49), 10619 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Jin-Ping, Y.: Fission and fusion of solitons for the (1+1)-dimensional Kupershmidt equation. Commun. Theor. Phys. 35(4), 405 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zheng-Yi, M., Chun-Long, Z.: Fission and fusion of localized coherent structures for a higher-order Broer–Kaup system. Commun. Theor. Phys. 43(6), 993 (2005)

    Article  MathSciNet  Google Scholar 

  51. Serkin, V.N., Chapela, V.M., Percino, J., Belyaeva, T.L.: Nonlinear tunneling of temporal and spatial optical solitons through organic thin films and polymeric waveguides. Opt. Commun. 192(3–6), 237–244 (2001)

    Article  Google Scholar 

  52. Ono, H., Nakata, I.: Reflection and transmission of an ion-acoustic soliton at a step-like inhomogeneity. J. Phys. Soc. Jpn. 63(1), 40–46 (1994)

    Article  Google Scholar 

  53. Jimbo, M., Kruskal, M.D., Miwa, T.: The Painlevé test for the self-dual Yang-Mills equations. Phys. Lett. A 92, 59 (1982)

    Article  MathSciNet  Google Scholar 

  54. Conte, R., Musette, M.: The Painlevé Handbook. Springer, Dordrecht (2008)

    MATH  Google Scholar 

  55. Roy-Chowdhury, A.K.: Painlevé Analysis and Its Applications, vol. 105, CRC Press (1999)

  56. Peng, W.Q., Tian, S.F., Zhang, T.T.: Dynamics of the soliton waves, breather waves, and rogue waves to the cylindrical Kadomtsev–Petviashvili equation in pair-ion-electron plasma. Phys. Fluids 31(10), 102107 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

In addition to the authors’ gratitude for the reviewers’ comments and suggestions, we also want to appreciate the help of the reviewers in improving the quality of the paper. Mr. Subrata Roy (JRF) sincerely appreciates the Fellowship granted by University Grants Commission (UGC) [No. 1106/2018].

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SR contributed to writing—original draft preparation and writing—review and editing. SR contributed to software, visualization, and methodology. RRK contributed to conceptualization. PC contributed to investigation.

Corresponding author

Correspondence to Santanu Raut.

Ethics declarations

Conflict of interest

The authors have no conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Raut, S., Kairi, R.R. et al. Bilinear Bäcklund, Lax pairs, breather waves, lump waves and soliton interaction of (2+1)-dimensional non-autonomous Kadomtsev–Petviashvili equation. Nonlinear Dyn 111, 5721–5741 (2023). https://doi.org/10.1007/s11071-022-08126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08126-7

Keywords

Navigation