Skip to main content
Log in

Non-stationary Solitary Wave Solution for Damped Forced Kadomtsev–Petviashvili Equation in a Magnetized Dusty Plasma with q-Nonextensive Velocity Distributed Electron

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Reductive perturbation method (RPM) is used to obtain damped forced Kadomtsev–Petviashvili (DFKP) equation for the ion acoustic waves (IAWs) in a magnetized dusty plasma comprising electrons abiding by q-nonextensive velocity distribution, in the presence of external periodic force along with a damping term. A nonstationary solitary wave solution of IAW under the influence of forcing and damping term is derived through the framework of KP equation. The influence of various plasma parameters such as electron velocity distribution parameter (q), collisional frequency (\(\nu _{id0}\)), initial wave velocity (\(M_0\)), external periodic forcing term (\(f_0\)) and periodicity of external force (\(\omega \)) etc. on solitary wave structures are studied from a numerical standpoint. Significant effects in the variation of width and amplitude of the soliton are observed due to the change of the parameters \(f_0\), M and \(\omega \). It is found that there is a parametric regime of \(f_0\) for which the solitary structure exists in the form of a Gaussian pulse and beyond a cut-off value of \(f_0\), the solitary structure collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

No data are used in our article.

Code Availability

MATLAB codes for plotting the graphs are available.

References

  1. Asano, N., Taniuti, T., Yajima, N.: Perturbation method for a nonlinear wave modulation. J. Math. Phys. 10(11), 2020–2024 (1969)

    Article  MathSciNet  Google Scholar 

  2. Bains, A.S., Tribeche, M., Gill, T.S.: Modulational instability of ion-acoustic waves in a plasma with aqnonextensive electron velocity distribution. Phys. Plasmas 18(2), 022108 (2011)

    Article  Google Scholar 

  3. Beskin, V.S., Gurevich, A.V., Istomin, J.N., Istomin, Y.N., Istomin, Y.N., et al.: Physics of the Pulsar Magnetosphere. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Chatterjee, P., Saha, T., Ryu, C.M.: Obliquely propagating ion acoustic solitary waves and double layers in a magnetized dusty plasma with anisotropic ion pressure. Phys. Plasmas 15(12), 123702 (2008)

    Article  Google Scholar 

  5. Chowdhury, S., Mandi, L., Chatterjee, P.: Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas. Phys. Plasmas 25(4), 042112 (2018)

    Article  Google Scholar 

  6. Das, T.K., Ali, R., Chatterjee, P.: Effect of dust ion collision on dust ion acoustic waves in the framework of damped Zakharov–Kuznetsov equation in presence of external periodic force. Phys. Plasmas 24(10), 103703 (2017)

    Article  Google Scholar 

  7. Gibbons, G.W., Hawking, S.W., Siklos, S.T.C.: The Very Early Universe: Proceedings of the Nuffeld Workshop, Cambridge 21 June to 9 July, (1982) CUP Archive (1985)

  8. Goldreich, P., Julian, W.H.: Pulsar electrodynamics. Astrophys. J. 157, 869 (1969)

    Article  Google Scholar 

  9. Guo, M., Chen, F., Zhang, Y.Y., Liu, J., Yang, H.: Study of ion-acoustic solitary waves in a magnetized plasma using the three-dimensional time-space fractional Schamel-KdV equation. Complexity 2018, 6852548 (2018)

    Article  MATH  Google Scholar 

  10. Haas, F., Mahmood, S.: Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92(5), 053112 (2015)

    Article  MathSciNet  Google Scholar 

  11. Hanssen, E.T., Emslie, A.G.: The Physics of Solar Flares, vol. 14. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  12. Ikezi, H., Taylor, R.J., Baker, D.R.: Formation and interaction of ion-acoustic solitions. Phys. Rev. Lett. 25(1), 11 (1970)

    Article  Google Scholar 

  13. Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons and Chaos. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  14. Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory. Applicable Mathematics Series. Pitman, Boston (1982)

    MATH  Google Scholar 

  15. Kakutani, T., Ono, H., Taniuti, T., Wei, C.C.: Reductive perturbation method in nonlinear wave propagation II. Application to hydromagnetic waves in cold plasma. J. Phys. Soc. Jpn. 24(5), 1159–1166 (1968)

    Article  Google Scholar 

  16. Kaniadakis, G.: Non-linear kinetics underlying generalized statistics. Phys. A Stat. Mech. Appl. 296(3–4), 405–425 (2001)

    Article  MATH  Google Scholar 

  17. Leontovich, M.A., Seehafer, N.: Book-review-reviews of plasma physics-V. 9. Astron. Nachr. 312, 44 (1991)

    Google Scholar 

  18. Mamun, A.A.: Arbitrary amplitude dust-acoustic solitary structures in a three-component dusty plasma. Astrophys. Space Sci. 268(4), 443–454 (1999)

    Article  Google Scholar 

  19. Mamun, A.A., Shukla, P.K.: Comment on oscillating two-stream instability in ionospheric heating experiments. Phys. Plasmas 9(8), 3639–3640 (2002)

    Article  Google Scholar 

  20. Mamun, A.A., Shukla, P.K.: Linear and nonlinear dust-hydromagnetic waves. Phys. Plasmas 10(11), 4341–4349, 329 (2003)

    Article  Google Scholar 

  21. Melandso, F.: Lattice waves in dust plasma crystals. Phys. Plasmas 3(11), 3890–3901 (1996)

    Article  Google Scholar 

  22. Merlino, R.L., Barkan, A., Thompson, C., D’angelo, N.: Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5(5), 1607–1614 (1998)

  23. Michel, F.C.: Theory of pulsar magnetospheres. Rev. Modern Phys. 54(1), 1 (1982)

    Article  Google Scholar 

  24. Miller, H.R., Wiita, P.J.: Active galactic nuclei, vol. 30 (1988)

  25. Mondal, K.K., Roy, A., Chatterjee, P., Raut, S.: Propagation of ion-acoustic solitary waves for damped forced Zakharov–Kuznetsov equation in a relativistic rotating magnetized electron-positron-ion plasma. Int. J. Appl. Comput. Math. 6, 55 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pakzad, H.R.: Solitary waves of the Kadomtsev–Petviashvili equation in warm dusty plasma with variable dust charge, two temperature ion and nonthermal electron. Chaos Solitons Fractals 42(2), 874–879 (2009)

    Article  MATH  Google Scholar 

  27. Pakzad, H.R.: Soliton energy of the Kadomtsev–Petviashvili equation in warm dusty plasma with variable dust charge, two-temperature ions, and nonthermal electrons. Astrophys. Space Sci. 326(1), 69–75 (2010)

    Article  MATH  Google Scholar 

  28. Rao, N.N., Shukla, P.K., Yu, M.Y.: Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38(4), 543–546 (1990)

    Article  Google Scholar 

  29. Renyi, A.: On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hung. 6(3–346 4), 285–335 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sabry, R., Moslem, W.M., Shukla, P.K.: Fully nonlinear ion-acoustic solitary waves in a plasma with positive negative ions and nonthermal electrons. Phys. Plasmas 16(3), 032302 (2009)

    Article  Google Scholar 

  31. Sahu, B.: Ion acoustic solitary waves and double layers with nonextensive electrons and thermal positrons. Phys. Plasmas 18(8), 082302 (2011)

    Article  Google Scholar 

  32. Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrodinger equation with computational applications by variational method. Eur. Phys. J. Plus 130(9), 182 (2015)

    Article  Google Scholar 

  33. Sen, A., Tiwari, S., Mishra, S., Kaw, P.: Nonlinear wave excitations by orbiting charged space debris objects. Adv. Space Res. 56(3), 429–435 (2015)

    Article  Google Scholar 

  34. Shalini, Saini, N.S.: Ion acoustic solitary waves and double layers in a plasma with two temperature electrons featuring Tsallis distribution. Phys. Plasmas 21(10), 102901 (2014)

    Article  Google Scholar 

  35. Shewy, E.E., Maaty, M.A.E., Abdelwahed, H.G., Elmessary, M.A.: Solitary solution and energy for the Kadomtsev–Petviashvili equation in two temperatures charged dusty grains. Astrophys. Space Sci. 332(1), 179–186 (2011)

    Article  Google Scholar 

  36. Shukla, P.K., Silin, V.P.: Dust ion-acoustic wave. Phys. Scr. 45(5), 508 (1992)

    Article  Google Scholar 

  37. Shukla, P.K., Yu, M.Y., Bharuthram, R.: Linear and nonlinear dust drift waves. J. Geophys. Res. Space Phys. 96(A12), 21343–21346 (1991)

    Article  Google Scholar 

  38. Tagare, S.G.: Effect of ion temperature on propagation of ion-acoustic solitary waves of small amplitudes in collisionless plasma. Plasma Phys. 15(12), 1247 (1973)

    Article  Google Scholar 

  39. Taibany, W.E., Tribeche, M.: Nonlinear ion-acoustic solitary waves in electronegative plasmas with electrons featuring Tsallis distribution. Phys. Plasmas 19(2), 024507 (2012)

    Article  Google Scholar 

  40. Tappert, F., et al.: Improved Korteweg–de Vries equation for ion-acoustic waves (1972)

  41. Tribeche, M., Djebarni, L., Amour, R.: Ion-acoustic solitary waves in a plasma with a \(q\)-nonextensive electron velocity distribution. Phys. Plasmas 17(4), 042114 (2010)

    Article  Google Scholar 

  42. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ullah, G., Saleem, M., Khan, M., Khalid, M., Rahman, A., Nabi, S.: Ion acoustic solitary waves in magnetized electron positronion plasmas with Tsallis distributed electrons. Contrib. Plasma Phys. 60(10), e202000068 (2020)

    Article  Google Scholar 

  44. Weinberg, S., Dicke, R.H.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1973)

    Google Scholar 

  45. Xiao, Z.J., Ling, G.B.: Analytic solutions to forced KdV equation. Commun. Theor. Phys. 52(2), 279 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The paper has been revised in the light of reviewer’s valuable suggestions. Thanks are due to the reviewers for their comments on the earlier version of this presentation.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

SR: writing—original draft preparation; AR: methodology and visualization; KKM: conceptualization, writing—review and editing; PC: investigation; NMC: review, editing and software implementation.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We consider the Eq. (30) and differentiating with respect to \(\tau \) we get

$$\begin{aligned} \frac{dI}{d\tau }= & {} \int \limits _{-\infty }^{\infty }2\phi _{1}\frac{ \partial \phi _{1}}{\partial Y }dY \nonumber \\= & {} -\int \limits _{-\infty }^{\infty }\left( 2\phi _{1}\left( Al\phi _{1}+\frac{Cm^{2}}{l}\right) \frac{\partial \phi _{1}}{\partial Y } + Bl^{3}\frac{\partial ^{3}\phi _{1}}{\partial Y ^{3}}\right) dY ~~~~(\text {using Eq.}\, {(28)})\nonumber \\= & {} -2Al\int \limits _{-\infty }^{\infty }{\phi _{1}}^2 \frac{\partial \phi _{1}}{\partial Y}\partial Y -2\frac{Cm^2}{l}\int \limits _{-\infty }^{\infty }\phi _{1}\frac{\partial \phi _{1}}{\partial Y }\partial Y -Bl^3\int \limits _{-\infty }^{\infty }2\phi _{1} \frac{ \partial ^{3} \phi _{1}}{\partial Y^{3} }\partial Y\nonumber \\= & {} -2AlI_1 - 2\frac{Cm^2}{l} I_2 -Bl^3 I_3. \end{aligned}$$
(40)

Now

$$\begin{aligned}&I_1= \int \limits _{-\infty }^{\infty }{\phi _{1}}^2 \frac{\partial \phi _{1}}{\partial Y }dY= \int \limits _{-\infty }^{\infty }{\phi _{1}}^3 d\phi _1 =\left[ \frac{\phi _{1}^{3}}{3}\right] _{-\infty }^{\infty } =0 ~~~~({\mathrm{Assuming} \,\,\phi _{1}\rightarrow 0\,\,\mathrm{as}\,\, Y\rightarrow \pm \infty }) \end{aligned}$$
(41)
$$\begin{aligned}&I_2= \int \limits _{-\infty }^{\infty }{\phi _{1}} \frac{\partial \phi _{1}}{\partial Y }dY= \int \limits _{-\infty }^{\infty }{\phi _{1}}^2 d\phi _1 = \left[ \frac{\phi _{1}^{2}}{2}\right] _{-\infty }^{\infty } =0 ~~~~ ({\mathrm{Assuming}\,\, \phi _{1}\rightarrow 0\,\,\mathrm{as}\,\, Y\rightarrow \pm \infty }) \end{aligned}$$
(42)
$$\begin{aligned} I_3= & {} 2\int \limits _{-\infty }^{\infty }\phi _{1} \frac{ \partial ^{3} \phi _{1}}{\partial Y^{3} }dY \nonumber \\= & {} 2\left[ \phi _{1}{\frac{\partial ^{2} \phi _{1}}{\partial Y^2}}\right] _{-\infty }^{\infty }-2\int \limits _{-\infty }^{\infty }\frac{\partial \phi _{1}}{\partial Y} \frac{\partial ^{2} \phi _{1}}{\partial Y^2} dY \nonumber \\= & {} 2.0 - \int \limits _{-\infty }^{\infty }d\bigg \{\bigg (\frac{\partial \phi _{1}}{\partial Y}\bigg )^2\bigg \}~~~~ ({\mathrm{Assuming}\,\, \mathrm{the} \,\,\mathrm{boundary} \,\,\mathrm{condition} \,\,\phi _{1}\rightarrow 0 \,\,\mathrm{as }\,\,Y\rightarrow \pm \infty }) \nonumber \\= & {} -\left[ \bigg ({\frac{\partial \phi _{1}}{\partial Y}}\bigg )^2\right] _{-\infty }^{\infty } \nonumber \\= & {} 0 ~~~~ ({\mathrm{Assuming}\,\, \mathrm{the}\,\, \mathrm{boundary}\,\, \mathrm{condition }\,\,{\frac{\partial \phi _{1}}{\partial Y}}\rightarrow 0 \,\,\mathrm{as}\,\, Y\rightarrow \pm \infty }) \end{aligned}$$
(43)

Hence Eq. (40) proves that (30) remains conserve for KdV-type equation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, S., Roy, A., Mondal, K.K. et al. Non-stationary Solitary Wave Solution for Damped Forced Kadomtsev–Petviashvili Equation in a Magnetized Dusty Plasma with q-Nonextensive Velocity Distributed Electron. Int. J. Appl. Comput. Math 7, 223 (2021). https://doi.org/10.1007/s40819-021-01168-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01168-2

Keywords

Mathematics Subject Classification

Navigation