Skip to main content
Log in

Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

With the inhomogeneities of media taken into account, a generalized variable-coefficient Kadomtsev–Petviashvili (vcKP) equation is proposed to model nonlinear waves in fluid mechanics and plasma physics. Based on Hirota bilinear method and symbolic computation, we present lump and lump–soliton interaction solutions of the vcKP equation. These local solutions are derived by taking the auxiliary function as the positive quadratic function or the linear combination of the positive quadratic function and the exponential function. Compared with the results allowed by the constant-coefficient KP equation, lump and lump–soliton solutions for the vcKP equation possess more abundant properties. It is shown that the velocity, moving path, and maximum height of the lump are completely characterized by the time functions rather than the constant parameters. The interaction between a lump and one line soliton are still nonelastic, but the track of the lump obeys the controllable function of time. The lump interacting with resonance soliton pairs exhibits a kind of special rogue wave in which the peak emerges and evolves with the varying path. The detailed analysis and discussion of these solutions are provided and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lonngren, K.E.: Ion acoustic soliton experiments in a plasma. Opt. Quantum Electron. 30, 615 (1998)

    Article  Google Scholar 

  2. Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287 (2008)

    Article  MathSciNet  Google Scholar 

  3. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241 (2016)

    Article  MathSciNet  Google Scholar 

  4. Jia, S.L., Gao, Y.T., Zhao, C., Lan, Z.Z., Feng, Y.J.: Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Eur. Phys. J. Plus 132, 34 (2017)

    Article  Google Scholar 

  5. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805 (1973)

    Article  MathSciNet  Google Scholar 

  6. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  7. Miura, M.R.: Bäcklund Transformation. Springer, Berlin (1978)

    Google Scholar 

  8. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  9. Zhang, H.Q., Li, J., Xu, T., Zhang, Y.X., Hu, W., Tian, B.: Optical soliton solutions for two coupled nonlinear Schrödinger systems via Darboux transformation. Phys. Scr. 76, 452 (2007)

    Article  Google Scholar 

  10. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975 (2015)

    Article  MathSciNet  Google Scholar 

  11. Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923 (2016)

    Article  MathSciNet  Google Scholar 

  13. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86, 523 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ma, W.X., Zhou, Y., Dougherty, R.: Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int. J. Mod. Phys. B 30, 1640018 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591 (2017)

    Article  MathSciNet  Google Scholar 

  17. Gao, L.N., Zi, Y.Y., Yin, Y.H., Ma, W.X., Lü, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233 (2017)

    Article  Google Scholar 

  18. Yang, J.Y., Ma, W.X.: Abundant lump-type solutions of the Jimbo–Miwa equation in (3+1)-dimensions. Comput. Math. Appl. 73, 220 (2017)

    Article  MathSciNet  Google Scholar 

  19. Yang, J.Y., Ma, W.X., Qin, Z.Y.: Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal. Math. Phys. 8, 427 (2018)

    Article  MathSciNet  Google Scholar 

  20. Wang, C.J., Fang, H., Tang, X.X.: State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 95, 2943 (2019)

    Article  Google Scholar 

  21. Wang, C.J.: Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn. 87, 2635 (2017)

    Article  MathSciNet  Google Scholar 

  22. Wang, C.J.: Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Nonlinear Dyn. 84, 697 (2016)

    Article  MathSciNet  Google Scholar 

  23. Tian, B., Wei, G.M., Zhang, C.Y., Shan, W.R., Gao, Y.T.: Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels, Bose–Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8 (2006)

    Article  Google Scholar 

  24. Wei, G.M., Gao, Y.T., Xu, T., Meng, X.H., Zhang, C.Y.: Painlevé property and new analytic solutions for a variable-coefficient Kadomtsev–Petviashvili equation with symbolic computation. Chin. Phys. Lett. 25, 1599 (2008)

    Article  Google Scholar 

  25. Yomba, E.: Construction of new soliton-like solutions for the (2+1)-dimensional KdV equation with variable coefficients. Chaos Solitons Fractals 21, 75 (2004)

    Article  MathSciNet  Google Scholar 

  26. Ye, L.Y., Lv, Y.N., Zhang, Y., Jin, H.P.: Grammian solutions to a variable-coefficient KP equation. Chin. Phys. Lett. 25, 357 (2008)

    Article  Google Scholar 

  27. Gwinn, A.W.: Two-dimensional long waves in turbulent flow over a sloping bottom. J. Fluid Mech. 341, 195 (1997)

    Article  MathSciNet  Google Scholar 

  28. Milewski, P.: Long wave interaction over varying topography. Phys. D 123, 36 (1998)

    Article  MathSciNet  Google Scholar 

  29. David, D., Levi, D., Winternitz, P.: Integrable nonlinear equations for water waves in straits of varying depth and width. Stud. Appl. Math. 76, 133 (1987)

    Article  MathSciNet  Google Scholar 

  30. David, D., Levi, D., Winternitz, P.: Solitons in shallow seas of variable depth and in marine straits. Stud. Appl. Math. 80, 1 (1989)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y.Y., Zhang, J.F.: Variable-coefficient KP equation and solitonic solution for two-temperature ions in dusty plasma. Phys. Lett. A 352, 155 (2006)

    Article  Google Scholar 

  32. Meng, X.H.: Wronskian and Grammian determinant structure solutions for a variable-coefficient forced Kadomtsev–Petviashvili equation in fluid dynamics. Phys. A 413, 635 (2014)

    Article  MathSciNet  Google Scholar 

  33. Yu, X., Sun, Z.Y.: Parabola solitons for the nonautonomous KP equation in fluids and plasmas. Ann. Phys. 367, 251 (2016)

    Article  MathSciNet  Google Scholar 

  34. Liang, Y.Q., Wei, G.M., Li, X.N.: Transformations and multi-solitonic solutions for a generalized variable-coefficient Kadomtsev–Petviashvili equation. Appl. Math. Comput. 61, 3268 (2011)

    Article  MathSciNet  Google Scholar 

  35. Ma, Z.Y., Chen, J.C., Fei, J.X.: Lump and line soliton pairs to a (2+1)-dimensional integrable Kadomtsev–Petviashvili equation. Comput. Math. Appl. 76, 1130 (2018)

    Article  MathSciNet  Google Scholar 

  36. Liu, J.G., He, Y.: Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 92, 1103 (2018)

    Article  Google Scholar 

  37. Nucci, M.C.: Painlevé property and pseudopotentials for nonlinear evolution equations (tables). J. Phys. A 22, 2897 (1989)

    Article  MathSciNet  Google Scholar 

  38. Hirota, R.: The Direct Method in Soliton Theory, vol. 155. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  39. Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. Ser. A 452, 223 (1996)

    Article  MathSciNet  Google Scholar 

  40. Ma, W.X.: Bilinear equations, Bell polynomials and linear superposition principle. J. Phys. Conf. Ser. 411, 012021 (2013)

    Article  Google Scholar 

  41. Fokas, A.S., Pelinovsky, D.E., Sulem, C.: Interaction of lumps with a line soliton for the DSII equation. Physica D 152, 189 (2001)

    Article  MathSciNet  Google Scholar 

  42. Lu, Z.M., Tian, E.M., Grimshaw, R.: Interaction of two lump solitons described by the Kadomtsev–Petviashvili I equation. Wave Motion 40, 123 (2004)

    Article  MathSciNet  Google Scholar 

  43. Wang, C.J., Dai, Z.D., Liu, C.F.: Interaction between kink solitary wave and rogue wave for (2+1)-dimensional Burgers equation. Mediterr. J. Math. 13, 1087 (2016)

    Article  MathSciNet  Google Scholar 

  44. Tan, W., Dai, Z.D.: Dynamics of kinky wave for (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn. 85, 817 (2016)

    Article  MathSciNet  Google Scholar 

  45. Vladimirov, V.A., Maczka, C.: Exact solutions of generalized Burgers equation, describing travelling fronts and their interaction. Rep. Math. Phys. 60, 317 (2007)

    Article  MathSciNet  Google Scholar 

  46. Jia, M., Lou, S.Y.: A novel type of rogue waves with predictability in nonlinear physics. arXiv:1710.06604

Download references

Acknowledgements

The project is supported by the National Natural Science Foundation of China (Nos. 11705077 and 11775104) and Scientific Research Foundation of the First-Class Discipline of Zhejiang Province (B) (No. 201601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyi Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Ma, Z., Fei, J. et al. Novel characteristics of lump and lump–soliton interaction solutions to the generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn 98, 551–560 (2019). https://doi.org/10.1007/s11071-019-05211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05211-2

Keywords

Navigation