Skip to main content
Log in

Multi-soliton solutions of the forced variable-coefficient extended Korteweg–de Vries equation arisen in fluid dynamics of internal solitary waves

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper, with symbolic computation, is a forced variable-coefficient extended Korteweg–de Vries equation, which can describe the weakly-nonlinear long internal solitary waves (ISWs) in the fluid with the continuous stratification on density. By virtue of the Hirota bilinear method, multi-soliton solutions for such an equation with the external force term have been derived. Furthermore, effects are discussed with the aid of the characteristic line: (I) Inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, play a role in the soliton behavior; (II) Solitons change their initial propagation direction on the compact shock or anti-shock wave background in the presence of the external time-dependent force, and the results present an extended view compared with that for the linear theory; (III) Combined effects of the inhomogeneities and external force are regarded as the nonlinear composition of the independent influence induced by the two factors. Those results could be expected to be helpful for the investigation on the dynamics of the ISWs in an ocean or atmosphere stratified fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamb, K.G., Polukhina, O., Talipova, T., Pelinovsky, E., Xiao, W., Kurkin, A.: Breather generation in fully nonlinear models of a stratified fluid. Phys. Rev. E 75, 046306 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bogucki, D., Dickey, T., Redekopp, L.G.: Sediment resuspension and mixing by resonantly generated internal solitary waves. J. Phys. Oceanogr. 27, 1181 (1997)

    Article  Google Scholar 

  3. Holloway, P.E., Pelinovsky, E., Talipova, T., Barnes, B.: A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr. 27, 871 (1997)

    Article  Google Scholar 

  4. Lamb, K.G.: Shoaling solitary internal waves: on a criterion for the formation of waves with trapped cores. J. Fluid Mech. 478, 81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Small, R.J., Hornby, R.P.: A comparison of weakly and fully non-linear models of the shoaling of a solitary internal wave. Ocean Model. 8, 395 (2005)

    Article  Google Scholar 

  6. Stastna, M., Peltier, W.R.: On the resonant generation of large-amplitude internal solitary and solitary-like waves. J. Fluid Mech. 543, 267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grimshaw, R.H., Pelinovsky, E., Talipova, T.: Modelling internal solitary waves in the coastal ocean. Surv. Geophys. 28, 273 (2007)

    Article  Google Scholar 

  8. Slyunyaev, A.V.: Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity. J. Exp. Theor. Phys. 92, 529 (2001)

    Article  Google Scholar 

  9. Barnett, M.P., Capitani, J.F., Von Zur Gathen, J., Gerhard, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quant. Chem. 100, 80 (2004)

    Article  Google Scholar 

  10. Hong, W.P.: Comment on: spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 361, 520 (2007)

    Article  MATH  Google Scholar 

  11. Tian, B., Gao, Y.T.: Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation. Eur. Phys. J. D 33, 59 (2005)

    Article  Google Scholar 

  12. Tian, B., Gao, Y.T.: Comment on: exact solutions of cylindrical and spherical dust ion acoustic waves. Phys. Plasmas 12, 054701 (2005)

    Article  MathSciNet  Google Scholar 

  13. Tian, B., Gao, Y.T.: Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves. Phys. Plasmas 12, 070703 (2005)

    Article  MathSciNet  Google Scholar 

  14. Tian, B., Gao, Y.T.: Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243 (2005)

    Article  MATH  Google Scholar 

  15. Tian, B., Gao, Y.T.: On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 449 (2005)

    Article  MATH  Google Scholar 

  16. Tian, B., Gao, Y.T.: Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas. Phys. Lett. A 362, 283 (2007)

    Article  MATH  Google Scholar 

  17. Das, G., Sarma, J.: Response to comment on: a new mathematical approach for finding the solitary waves in dusty plasma. Phys. Plasmas 6, 4394 (1999)

    Article  MathSciNet  Google Scholar 

  18. Yan, Z.Y., Zhang, H.Q.: Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34, 1785 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, Y.T., Tian, B.: Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation. Phys. Plasmas 13, 112901 (2006)

    Article  Google Scholar 

  20. Gao, Y.T., Tian, B.: (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation. Phys. Plasmas (Lett.) 13, 120703 (2006)

    Article  Google Scholar 

  21. Gao, Y.T., Tian, B.: Cylindrical Kadomtsev-Petviashvili model, nebulons and symbolic computation for cosmic dust-ion-acoustic waves. Phys. Lett. A 349, 314 (2006)

    Article  Google Scholar 

  22. Gao, Y.T., Tian, B.: Reply to comment on: spherical Kadomtsev-Petviashvili equation and nebulons for dust-ion-acoustic waves with symbolic computation. Phys. Lett. A 361, 523 (2007)

    Article  MATH  Google Scholar 

  23. Gao, Y.T., Tian, B.: On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations. Europhys. Lett. 77, 15001 (2007)

    Article  Google Scholar 

  24. Grimshaw, R.H., Pelinovsky, E., Stepanyants, Y., Talipova, T.: Modelling internal solitary waves on the Australian North West Shelf. Mar. Freshw. Res. 57, 265 (2006)

    Article  Google Scholar 

  25. Grimshaw, R.H., Pelinovsky, D., Pelinovsky, E., Slunyaev, A.: Generation of large-amplitude solitons in the extended Korteweg–de Vries equation. Chaos 12, 1070 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kakutani, T., Yamasaki, N.: Solitary waves on a two-layer fluid. J. Phys. Soc. Jpn. 45, 674 (1978)

    Article  Google Scholar 

  27. Grimshaw, R.H., Pelinovsky, E., Poloukhina, O.: Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 9, 221 (2002)

    Article  Google Scholar 

  28. Grimshaw, R.H., Pelinovsky, E., Talipova, T.: Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Phys. D 132, 40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Michalet, H., Barthelemy, E.: Experimental study of interfacial solitary waves. J. Fluid Mech. 366, 159 (1998)

    Article  Google Scholar 

  30. Grimshaw, R.H., Chan, K.H., Chow, K.W.: Transcritical flow of a stratified fluid: the forced extended Korteweg–de Vries model. Phys. Fluids 14, 755 (2002)

    Article  MathSciNet  Google Scholar 

  31. Grimshaw, R.H., Smyth, N.F.: Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429 (1986)

    Article  MATH  Google Scholar 

  32. Hanazaki, H.: A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle. Phys. Fluids A 4, 2230 (1992)

    Article  MATH  Google Scholar 

  33. Talipova, T., Pelinovsky, E., Kouts, T.: Kinematic characteristics of an internal wave field in the Gotland Deep in the Baltic Sea. Oceanology 38, 33 (1998)

    Google Scholar 

  34. Holloway, P.E., Pelinovsky, E., Talipova, T.: A generalized Korteweg–de Vries model of internal tide transformation in the coastal zone. J. Geophys. Res. C 104, 18333 (1999)

    Article  Google Scholar 

  35. Tian, B., Wei, G.M., Zhang, C.Y., Shan, W.R., Gao, Y.T.: Transformations for a generalized variable-coefficient Korteweg–de Vries model from blood vessels, Bose–Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8 (2006)

    Article  MATH  Google Scholar 

  36. Li, J., Xu, T., Meng, X.H., Zhang, Y.X., Zhang, H.Q., Tian, B.: Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Grimshaw, R.H., Pelinovsky, E., Talipova, T., Kurkin, A.: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34, 2774 (2004)

    Article  MathSciNet  Google Scholar 

  38. Chow, K.W., Grimshaw, R.H., Ding, E.: Interactions of breathers and solitons in the extended Korteweg–de Vries equation. Wave Motion 43, 158 (2005)

    Article  MathSciNet  Google Scholar 

  39. Zahibo, N., Pelinovsky, E., Sergeeva, A.: Weakly damped KdV soliton dynamics with the random force. Chaos Solitons Fractals 39, 1645 (2009)

    Article  Google Scholar 

  40. Djordjevic, V., Redekopp, L.: The fission and disintegration of internal solitary waves morning over two dimensional topography. J. Phys. Oceanogr. 8, 1016 (1978)

    Article  Google Scholar 

  41. Miles, J.W.: On internal solitary waves. Tellus 31, 456 (1979)

    Article  MathSciNet  Google Scholar 

  42. Miles, J.W.: On internal solitary waves II. Tellus 33, 397 (1981)

    Article  MathSciNet  Google Scholar 

  43. Tay, K.G., Ong, C.T., Mohamad, M.N.: Forced perturbed Korteweg–de Vries equation in an elastic tube filled with a viscous fluid. Int. J. Eng. Sci. 45, 339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Grimshaw, R.H., Pelinovsky, E.: Interaction of a solitary wave with an external force in the extended Korteweg–de Vries equation. Int. J. Bifurcat. Chaos 12, 2409 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hanazaki, H.: A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle. Phys. Fluids A 4, 2230 (1992)

    Article  MATH  Google Scholar 

  46. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  47. Zhang, C.Y., Yao, Z.Z., Zhu, H.W., Xu, T., Li, J., Meng, X.H., Gao, Y.T.: Exact analytic N-soliton-like solution in Wronskian form for a generalized variable-coefficient Korteweg–de Vries model from plasmas and fluid dynamics. Chin. Phys. Lett. 24, 1173 (2007)

    Article  Google Scholar 

  48. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  MATH  Google Scholar 

  49. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, X.G., Meng, X.H., Gao, Y.T., Wen, X.Y.: Analytic N-solitary-wave solution of a variable-coefficient Gardner equation from fluid dynamics and plasma physics. Appl. Math. Comput. 210, 313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pelinovsky, D., Grimshaw, R.H.: Structural transformation of eigenvalues for a perturbed algebraic soliton potential. Phys. Lett. A 229, 165 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Chow, K.W.: A class of doubly periodic waves for nonlinear evolution equations. Wave Motion 35, 71 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  54. Veksler, A., Zarmi, Y.: Wave interactions and the analysis of the perturbed Burgers equation. Phys. D 211, 57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sun, Z.Y., Gao, Y.T., Yu, X., Meng, X.H., Liu, Y.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev-Petviashvili equation in fluid dynamics, plasma physics and electrodynamics. Wave Motion 46, 511 (2009)

    Article  MathSciNet  Google Scholar 

  56. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, W.J., Liu, Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. Phys. Rev. E 80, 066608 (2009)

    Article  Google Scholar 

  57. Liu, Y., Gao, Y.T., Xu, T., Lü, X., Sun, Z.Y., Meng, X.H., Yu, X., Gai, X.L.: Soliton solution, Bäcklund transformation, and conservation laws for the Sasa-Satsuma equation in the optical fiber communications. Z. Naturforsch. A 65, 291 (2010)

    Google Scholar 

  58. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg–de Vries equation. Phys. Scr. 81, 045402 (2010)

    Article  Google Scholar 

  59. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  60. Lighthill, M.J.: Surveys in Mechanics. Cambridge University Press, Cambridge (1956)

    Google Scholar 

  61. Wu, L., Zhang, J.F., Li, L., Finot, C., Porsezian, K.: Similariton interactions in nonlinear graded-index waveguide amplifiers. Phys. Rev. A 78, 053807 (2008)

    Article  Google Scholar 

  62. Karlsson, M., Kaup, D.J., Malomed, B.A.: Interactions between polarized soliton pulses in optical fibers: exact solutions. Phys. Rev. E 54, 5802 (1996)

    Article  Google Scholar 

  63. Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  Google Scholar 

  64. Liu, W.J., Tian, B., Xu, T., Sun, K., Jiang, Y.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Ann. Phys. 325, 1633 (2010)

    Article  MATH  Google Scholar 

  65. Zhang, H.Q., Xu, T., Li, J., Tian, B.: Integrability of an N-coupled nonlinear Schrödinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E 77, 026605 (2008)

    Article  MathSciNet  Google Scholar 

  66. Zhang, H.Q., Tian, B., Lü, X., Li, H., Meng, X.H.: Soliton interaction in the coupled mixed derivative nonlinear Schrödinger equations. Phys. Lett. A 373, 4315 (2009)

    Article  MathSciNet  Google Scholar 

  67. Xu, T., Tian, B., Li, L.L., Lü, X., Zhang, C.: Dynamics of Alfvén solitons in inhomogeneous plasmas. Phys. Plasmas 15, 102307 (2008)

    Article  Google Scholar 

  68. Xu, T., Tian, B.: Bright N-soliton solutions in terms of the triple Wronskian for the coupled nonlinear Schrödinger equations in optical fibers. J. Phys. A 43, 245205 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Gao, YT., Sun, ZY. et al. Multi-soliton solutions of the forced variable-coefficient extended Korteweg–de Vries equation arisen in fluid dynamics of internal solitary waves. Nonlinear Dyn 66, 575–587 (2011). https://doi.org/10.1007/s11071-010-9936-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9936-7

Keywords

Navigation